

Identifiability in Sparse Factor Analysis

Nils Sturma

Research group Mathematical Statistics TUM School of Computation, Information and Technology Technical University of Munich

(joint work with Mathias Drton, Miriam Kranzlmüller, Irem Portakal)

Spearman's One-Factor Model (1904)

Linear structural equations:

$$X_{1} = \lambda_{10} + \lambda_{1L}L + \varepsilon_{1},$$

$$X_{2} = \lambda_{20} + \lambda_{2L}L + \varepsilon_{2},$$

$$X_{3} = \lambda_{30} + \lambda_{3L}L + \varepsilon_{3},$$

$$X_{4} = \lambda_{40} + \lambda_{4L}L + \varepsilon_{4}.$$

Jointly independent errors: $\varepsilon_1, \ldots, \varepsilon_4$.

$$\operatorname{Var}[\varepsilon_{v}] = \omega_{vv} < \infty$$
, $\operatorname{Var}[L] = 1$.

Topic: Can we recover the "factor loadings"
$$\lambda_{vL}$$
 and the "error variances" ω_{vv} from $\Sigma = Var[X]$?

Socio-economic Example from Harmann (1976), Modern Factor Analysis

$$X = \Lambda L + \varepsilon, \quad \text{where } \Lambda = \begin{pmatrix} \lambda_{11} & 0 \\ 0 & \lambda_{22} \\ \lambda_{31} & 0 \\ \lambda_{41} & \lambda_{42} \\ \lambda_{51} & \lambda_{52} \end{pmatrix}$$

Observed covariance matrix (when Var[L] = I):

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda}\boldsymbol{\Lambda}^{\top} + \boldsymbol{\Omega} = \begin{pmatrix} \omega_{11} + \lambda_{11}^2 & 0 & \lfloor \lambda_{11}\lambda_{31} \rfloor & \lfloor \lambda_{11}\lambda_{41} \rfloor & \lambda_{11}\lambda_{51} \\ 0 & \omega_{22} + \lambda_{22}^2 & 0 & \lambda_{22}\lambda_{42} & \lambda_{22}\lambda_{52} \\ \lambda_{11}\lambda_{31} & 0 & \omega_{33} + \lambda_{31}^2 & \lfloor \lambda_{31}\lambda_{41} \rfloor & \lambda_{31}\lambda_{51} \\ \lambda_{11}\lambda_{41} & \lambda_{22}\lambda_{42} & \lambda_{31}\lambda_{41} & \omega_{44} + \lambda_{41}^2 + \lambda_{52}^2 & \lambda_{41}\lambda_{51} + \lambda_{42}\lambda_{52} \\ \lambda_{11}\lambda_{51} & \lambda_{22}\lambda_{52} & \lambda_{31}\lambda_{51} & \lambda_{41}\lambda_{51} + \lambda_{42}\lambda_{52} & \omega_{55} + \lambda_{51}^2 + \lambda_{52}^2 \end{pmatrix}$$

We see that

1) $\sqrt{\frac{\sigma_{13}\sigma_{14}}{\sigma_{34}}} = \sqrt{\frac{\lambda_{11}\lambda_{31}\lambda_{11}\lambda_{41}}{\lambda_{31}\lambda_{41}}} = \sqrt{\lambda_{11}^2} = a_1\lambda_{11}$ with $a_1 \in \{\pm 1\}$ and $\sigma_{34} = \lambda_{31}\lambda_{41} \neq 0$ 'almost surely', 2) $\frac{\sigma_{13}}{\sqrt{\sigma_{13}\sigma_{14}/\sigma_{34}}} = \frac{\lambda_{11}\lambda_{31}}{a_1\lambda_{11}} = a_1\lambda_{31}$ with $\lambda_{11} \neq 0$ 'almost surely'. \implies Can identify $\Lambda_{ch(L_1),L_1}$ up to column-sign, similarly $\Lambda_{ch(L_2),L_2}$.

Factor Analysis vs. Causal Representation Learning

Understanding sparse factor analysis is key for causal representation learning!

Variables:

Observed:
$$X = (X_v)_{v \in V}$$
 Latent: $L = (L_h)_{h \in H}$

Graph:

Bipartite directed graph
$$G = (V \dot{\cup} \mathcal{H}, D)$$
, that is, $D \subseteq \mathcal{H} \times V$.

Sparse factor analysis model:

 $X = \Lambda L + \varepsilon$

- all latent factors and error terms in (L, ε) are mutually independent, so $\Omega = Var[\varepsilon] = diag(\omega_{vv} : v \in V)$ diagonal, and Var[L] = I.
- parameter matrix Λ is sparse and supported over edge set D (write $\Lambda \in \mathbb{R}^D$).

Content of the Talk

Definition

Every factor analysis graph G yields a parametrization of the observed covariance matrix:

$$\tau_{G} : (\Lambda, \Omega) \longmapsto \Sigma \equiv \Lambda \Lambda^{\top} + \Omega$$

Fiber: $\mathcal{F}_{G}(\Omega, \Lambda) = \{ (\widetilde{\Omega}, \widetilde{\Lambda}) : \tau_{G}(\widetilde{\Omega}, \widetilde{\Lambda}) = \tau_{G}(\Omega, \Lambda) \}.$

The model given by G is generically sign-identifiable if

$$\mathcal{F}_{G}(\Omega,\Lambda) = \{ (\widetilde{\Omega},\widetilde{\Lambda}) : \widetilde{\Omega} = \Omega \text{ and } \widetilde{\Lambda} = \Lambda \Psi \text{ for } \Psi \in \{\pm 1\}^{|\mathcal{H}| \times |\mathcal{H}|} \text{ diagonal} \} \qquad \text{for `almost all'} (\Lambda,\Omega).$$

Main Contribution:

- Sufficient graphical condition for generic sign-identifiability.
- Recursive polynomial time algorithm.

(caveat: polynomial time when bounding a cardinality in a search step)

Nils Sturma | Identifiability in Sparse Factor Analysis

Gröbner basis computations solve the problem ... on a small scale.

Our Software


```
# Define graph
> L = matrix(c(1, 0,
                                                                       (Employ)
                                                               (School)
                                                                                (Service)
                                                                                        (House)
                                                         Por
                0, 1,
+
                1, 0,
+
                1, 1,
+
                1, 1), 5, 2, byrow=TRUE)
+
> g = FactorGraph(L)
>
> # Check identifiability
> res = mID(g)
Generic Sign-Identifiability Summary
# nr. of latent nodes that are gen. sign-identifiable: 2
# gen. sign-identifiable nodes: 1, 2
```

Available at https://github.com/MiriamKranzlmueller/id-factor-analysis.

Rotational Indeterminacy

• No restriction on Λ :

$$\Lambda\Lambda^{\top} + \Omega = (\Lambda Q)(Q^{\top}\Lambda^{\top}) + \Omega$$
 for all Q orthogonal.

- Literature: Focus on identifiability of Ω and $\Lambda\Lambda^{\top}$ in full factor analysis models.
- However, if Λ is sparse, we might get generic sign-identifiability.

Zero Upper Triangular Assumption

Definition

The graph G satisfies the Zero Upper Triangular Assumption (ZUTA) if there exists an ordering \prec on the latent nodes \mathcal{H} such that ch(h) is not contained in $\bigcup_{\ell \succ h} ch(\ell)$ for all $h \in \mathcal{H}$.

Example

	h_1	h_2	h ₃			h_1	h_3	h_2			h_1	h_3	h_2
v_1	(*	0	0)		v_1	(*	0	0)		v_1	(*	0	0)
v ₂	*	*	*	ZUTA	v ₂	*	*	*	upper-tri=0 ~→ upper-diag≠0	V ₃	*	*	0
<i>V</i> 3	*	0	*		V ₃	*	*	0		v ₂	*	*	*
<i>V</i> 4	*	*	*		<i>V</i> 4	*	*	*		<i>V</i> 4	*	*	*
<i>V</i> 5	*	*	*		V_5	*	*	*		V 5	*	*	*
V ₆	0/	*	*/		V ₆	0/	*	*/		<i>V</i> 6	0/	*	*/

ZUTA = "can permute cols and rows such that the upper right triangle of Λ is zero" and w.l.o.g. "diagonal entries are nonzero".

 V_5

 V_6

Anderson-Rubin Criterion

Theorem [Anderson, Rubin (1956)]

A factor analysis graph $G = (V \cup \mathcal{H}, D)$ that satisfies ZUTA is generically sign-identifiable if for any deleted row of the symbolic matrix $\Lambda = (\lambda_{vh}) \in \mathbb{R}^D$ there exist two disjoint submatrices that are generically of rank $|\mathcal{H}|$.

Example

$$\Lambda = \begin{pmatrix} \lambda_{v_1h_1} & 0\\ \lambda_{v_2h_1} & \lambda_{v_2h_2}\\ \lambda_{v_3h_1} & \lambda_{v_3h_2}\\ 0 & \lambda_{v_4h_2}\\ 0 & \lambda_{v_5h_2} \end{pmatrix}$$

Observation:

Need $|V| \geq 2|\mathcal{H}| + 1$.

Examples for Inconclusiveness of Anderson-Rubin

1)

[Hosszejni, Frühwirth-Schnatter (2022)]

2)

 $\lambda_{v_1h_1}$ 0 $\lambda_{v_2 h_1}$ $\lambda_{v_2h_2}$ $\lambda_{v_3h_1}$ $\lambda_{v_3h_2} \lambda_{v_3h_3}$ $\lambda_{v_4 h_1}$ $\lambda_{v_4h_2}$ $\lambda_{v_4h_3}$ $\lambda_{v_5 h_1}$ $\lambda_{v_5 h_3}$ $\lambda_{V_5h_2}$ $\lambda_{v_6h_1}$ 0 $\lambda_{v_6h_2}$

3)

0 $\lambda_{v_1h_1}$ $\lambda_{v_2h_1}$ 0 0 $\lambda_{v_2h_2}$ 0 $\lambda_{v_3h_2}$ 0 $\lambda_{v_3h_3}$ $\lambda_{v_4h_1}$ 0 $\lambda_{v_4 h_3}$ $\lambda_{v_4h_4}$ 0 0 0 $\lambda_{v_5 h_2}$ 0 0 0 0 0 0 0 $\lambda_{v_6 h_3}$ 0 $\lambda_{v_7 h_4}$ 0 0 0 $\lambda_{v_8h_4}$ 0 $\lambda_{v_9 h_4/2}$

Investigation of Anderson-Rubin

1) Anderson-Rubin: Fix $v \in V$. Find disjoint $U, W \subseteq V \setminus \{v\}$ with $|U| = |W| = |\mathcal{H}|$ such that $\det(\Lambda_{U,\mathcal{H}}) \neq 0$ and $\det(\Lambda_{W,\mathcal{H}}) \neq 0$ (not the zero polynomial) $\iff \det([\Lambda\Lambda^{\top}]_{U,W}) \neq 0.$

2) Consider the matrix with exactly one diagonal entry:

$$[\Lambda\Lambda^{\top}]_{\{\nu\}\cup U,\{\nu\}\cup W} = \left(\frac{[\Lambda\Lambda^{\top}]_{\nu\nu} \mid [\Lambda\Lambda^{\top}]_{\nu,W}}{[\Lambda\Lambda^{\top}]_{U,\nu} \mid [\Lambda\Lambda^{\top}]_{W,U}}\right) = \left(\frac{[\Lambda\Lambda^{\top}]_{\nu\nu} \mid \Sigma_{\nu,W}}{\Sigma_{U,\nu} \mid \Sigma_{U,W}}\right).$$

3) Solve for diagonal entry $[\Lambda\Lambda^{\top}]_{\nu\nu}$ by Laplace expansion:

$$0 = \det([\Lambda\Lambda^{\top}]_{\{v\}\cup U, \{v\}\cup W}) = [\Lambda\Lambda^{\top}]_{vv} \underbrace{\det(\Sigma_{U,W})}_{\neq 0} - \sum_{w \in W} \operatorname{sign}(w)\sigma_{vw} \det(\Sigma_{U,\{v\}\cup W \setminus \{w\}}).$$

4) Conclude: Solving for diagonal entries of $\Lambda\Lambda^{\top}$ is equivalent to solving for Ω .

 \implies Equivalent to solving for $\Sigma - \Omega = \Lambda \Lambda^{\top}$.

 $\stackrel{\text{ZUTA}}{\Longrightarrow}$ generic sign-identifiability (uniqueness of Cholesky decomposition).

Nils Sturma | Identifiability in Sparse Factor Analysis

Main Idea for Sparse Setup

Local approach: Can also choose U, W such that $|W| = |U| < |\mathcal{H}|$. \rightsquigarrow Ensure that det $([\Lambda\Lambda^{\top}]_{U,W}) \neq 0$ and that det $([\Lambda\Lambda^{\top}]_{\{v\}\cup U,\{v\}\cup W}) = 0$.

Characterization: When is det($[\Lambda \Lambda^{\top}]_{A,B}$) = 0 if Λ is sparse?

 \rightsquigarrow Intersection-free matchings.

Definition

System of paths $\Pi = \{\pi_1, \dots, \pi_k\}$ is matching of $A = \{a_1, \dots, a_k\} \subseteq V$ and $B = \{b_1, \dots, b_k\} \subseteq V$ if $\pi_i = a_i \leftarrow h_i \rightarrow b_i$.

A matching is intersection-free if all latent nodes h_i are distinct.

Lemma

For two subsets $A, B \subseteq V$ with |A| = |B| it holds that $det([\Lambda\Lambda^{\top}]_{A,B}) \neq 0$ if and only if there is an intersection-free matching of A and B.

Nils Sturma | Identifiability in Sparse Factor Analysis

Matching Criterion

Definition

Fix a latent node $h \in \mathcal{H}$. Tuple $(v, U, W, S) \in V \times 2^V \times 2^V \times 2^{\mathcal{H} \setminus \{h\}}$ satisfies the matching criterion for h if

(i) $pa(v) \setminus S = \{h\}$ and $v \notin U \cup W$,

(ii) U and W are disjoint, nonempty sets of equal cardinality,

(iii) there exists an intersection-free matching of U and W that avoids S,

(iv) there does not exist an intersection-free matching of $\{v\} \cup W$ and $\{v\} \cup U$ that avoids S.

S = "solved nodes".

By (iii), det($[\Lambda\Lambda^{\top}]_{U,W}$) $\neq 0$. By (iv), det($[\Lambda\Lambda^{\top}]_{\{v\}\cup U,\{v\}\cup W}$) = 0.

Algorithm: Recursive Solving

Theorem (M-identifiability)

If the tuple (v, U, W, S) satisfies the matching criterion with respect to h and all nodes $\ell \in S$ are "solved before", then we can "solve" for h.

That is, $(\widetilde{\Omega}, \widetilde{\Lambda}) \in \mathcal{F}_{G}(\Omega, \Lambda) \implies \widetilde{\Lambda}_{ch(h),h} = \pm \Lambda_{ch(h),h}.$

Algorithm (M-ID)

- Cycle through latent nodes h and search for tuples (v, U, W, S).
- Network-flow setup finds suitable tuples in polynomial time under a bound on |U| = |W|.

Conjecture: If we do not bound the cardinality |U| = |W|, then M-ID is NP-complete.

Remarks

- Subsumes Anderson-Rubin.
- Together with an extension, subsumes anything we know (e.g. Bekker and ten Berge, 1997).

Example

$$\Lambda = \begin{pmatrix} \lambda_{v_1h_1} & 0 & 0 \\ \lambda_{v_2h_1} & \lambda_{v_2h_2} & 0 \\ \lambda_{v_3h_1} & \lambda_{v_3h_2} & \lambda_{v_3h_3} \\ \lambda_{v_4h_1} & \lambda_{v_4h_2} & \lambda_{v_4h_3} \\ \lambda_{v_5h_1} & \lambda_{v_5h_2} & \lambda_{v_5h_3} \\ \lambda_{v_6h_1} & \lambda_{v_6h_2} & 0 \end{pmatrix}$$

$$\begin{array}{ll} h_1: \text{ Take } v = v_1, \ S = \emptyset \text{ and } U = \{v_2, v_6\}, \ W = \{v_3, v_4\}.\\ (\text{iii)} \ v_2 \leftarrow h_1 \rightarrow v_3, \ v_6 \leftarrow h_2 \rightarrow v_4; \quad (\text{iv)} \ \mathsf{pa}(\{v\} \cup U) \cap \mathsf{pa}(\{v\} \cup W) = \{h_1, h_2\}. \end{array}$$

 $\begin{array}{l} h_2: \mbox{ Take } v = v_2, \ S = \{h_1\} \ \mbox{and } U = \{v_3\}, \ W = \{v_6\}. \\ (\mbox{iii) } v_3 \leftarrow h_2 \rightarrow v_6; \quad (\mbox{iv) } (pa(\{v\} \cup U) \cap pa(\{v\} \cup W)) \setminus S = \{h_2\}. \end{array}$

$$\begin{array}{l} h_3: \text{ Take } v = v_3, \ S = \{h_1, h_2\} \text{ and } U = \{v_4\}, \ W = \{v_5\}.\\ (\text{iii}) \ v_4 \leftarrow h_3 \rightarrow v_5; \quad (\text{iv}) \ (\mathsf{pa}(\{v\} \cup U) \cap \mathsf{pa}(\{v\} \cup W)) \setminus S = \{h_3\}. \end{array}$$

Nils Sturma | Identifiability in Sparse Factor Analysis

Conclusion

- Sparse factor analysis models are the "building block" for many latent variable models.
- Latent variable models generally feature complicated parametrizations.
- Even in "simple" factor analysis models, there is still lots to explore
- Papers:
 - Sturma, Kranzlmueller, Portakal, Drton (2025). Matching Criterion for Identifiability in Sparse Factor Analysis. arXiv preprint arXiv:2502.02986.
 - Drton, Grosdos, Portakal, Sturma (2023). Algebraic Sparse Factor Analysis. arXiv preprint arXiv:2312.14762.

Established by the European Commission