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Spearman’s One-Factor Model (1904)
L: Intelligence

X1 X2 X3 X4

Linear structural equations:

X1 = λ10 + λ1LL + ε1,
X2 = λ20 + λ2LL + ε2,
X3 = λ30 + λ3LL + ε3,
X4 = λ40 + λ4LL + ε4.

Jointly independent
errors: ε1, . . . , ε4.

Var[εv ] = ωvv <∞, Var[L] = 1.

Topic: Can we recover the “factor loadings” λvL and the “error variances” ωvv from Σ = Var[X ]?
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Socio-economic Example from Harmann (1976), Modern Factor Analysis

L1

L2

Pop School Employ Service House X = ΛL + ε, where Λ =


λ11 0
0 λ22

λ31 0
λ41 λ42
λ51 λ52

 .

Observed covariance matrix (when Var[L] = I):

Σ = ΛΛ⊤ + Ω =



ω11 + λ2
11 0 λ11λ31 λ11λ41 λ11λ51

0 ω22 + λ2
22 0 λ22λ42 λ22λ52

λ11λ31 0 ω33 + λ2
31 λ31λ41 λ31λ51

λ11λ41 λ22λ42 λ31λ41 ω44 + λ2
41 + λ2

52 λ41λ51 + λ42λ52
λ11λ51 λ22λ52 λ31λ51 λ41λ51 + λ42λ52 ω55 + λ2

51 + λ2
52

 .

We see that

1)
√√√√σ13σ14

σ34
=

√√√√λ11λ31 λ11λ41
λ31λ41

=
√

λ2
11 = a1λ11 with a1 ∈ {±1} and σ34 = λ31λ41 , 0 ’almost surely’,

2) σ13√
σ13σ14/σ34

= λ11λ31
a1λ11

= a1λ31 with λ11 , 0 ’almost surely’.

=⇒ Can identify Λch(L1),L1 up to column-sign, similarly Λch(L2),L2.
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Factor Analysis vs. Causal Representation Learning
Sparse Factor Analysis

L1

L2

X1 X2 X3 X4 X5

Model:

X = ΛL + ε,

where Λ sparse.

Causal Representation Learning

[Schölkopf et al. (2021)]

L1 L2 L3

X1 X2 X3 X4 X5

Model:
X = GL + εX ,
L = ML + εL,

where G and M are sparse.

=⇒ X = G(I −M)−1︸             ︷︷             ︸
=:Λ

εL + εX

Understanding sparse factor analysis is key for causal representation learning!
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Setup
Variables:

Observed: X = (Xv)v∈V Latent: L = (Lh)h∈H

Graph:
Bipartite directed graph G = (V ∪̇H, D), that is, D ⊆ H× V .

Sparse factor analysis model:
X = ΛL + ε

– all latent factors and error terms in (L, ε) are mutually independent, so
Ω = Var[ε] = diag(ωvv : v ∈ V ) diagonal, and Var[L] = I .

– parameter matrix Λ is sparse and supported over edge set D (write Λ ∈ RD).
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Content of the Talk
Definition
Every factor analysis graph G yields a parametrization of the observed covariance matrix:

τG : (Λ, Ω) 7−→ Σ ≡ ΛΛ⊤ + Ω.
Fiber: FG(Ω, Λ) = {(Ω̃, Λ̃) : τG(Ω̃, Λ̃) = τG(Ω, Λ)}.

The model given by G is generically sign-identifiable if

FG(Ω, Λ) = {(Ω̃, Λ̃) : Ω̃ = Ω and Λ̃ = ΛΨ for Ψ ∈ {±1}|H|×|H| diagonal} for ‘almost all’ (Λ, Ω).

Main Contribution:
• Sufficient graphical condition for generic sign-identifiability.

• Recursive polynomial time algorithm.
(caveat: polynomial time when bounding a cardinality in a search step)

Gröbner basis computations solve the

problem ... on a small scale.
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Our Software

# Define graph
> L = matrix(c(1, 0,
+ 0, 1,
+ 1, 0,
+ 1, 1,
+ 1, 1), 5, 2, byrow=TRUE)
> g = FactorGraph(L)
>
> # Check identifiability
> res = mID(g)
Generic Sign-Identifiability Summary
# nr. of latent nodes that are gen. sign-identifiable: 2
# gen. sign-identifiable nodes: 1, 2

L1

L2

Pop School Employ Service House

Available at https://github.com/MiriamKranzlmueller/id-factor-analysis.
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Rotational Indeterminacy
L1

L2

X1 X2 X3 X4 X5

• No restriction on Λ:

ΛΛ⊤ + Ω = (ΛQ)(Q⊤Λ⊤) + Ω for all Q orthogonal.

• Literature: Focus on identifiability of Ω and ΛΛ⊤ in full factor analysis models.

• However, if Λ is sparse, we might get generic sign-identifiability.
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Zero Upper Triangular Assumption
Definition
The graph G satisfies the Zero Upper Triangular Assumption (ZUTA) if there exists an ordering ≺ on the
latent nodes H such that ch(h) is not contained in ⋃

ℓ≻h ch(ℓ) for all h ∈ H.

Example

h1

h2

h3

v1 v2 v3 v4 v5 v6

h1 h2 h3



v1 ∗ 0 0
v2 ∗ ∗ ∗
v3 ∗ 0 ∗
v4 ∗ ∗ ∗
v5 ∗ ∗ ∗
v6 0 ∗ ∗

ZUTA
⇝

h1 h3 h2



v1 ∗ 0 0
v2 ∗ ∗ ∗
v3 ∗ ∗ 0
v4 ∗ ∗ ∗
v5 ∗ ∗ ∗
v6 0 ∗ ∗

upper-tri=0
⇝

upper-diag,0

h1 h3 h2



v1 ∗ 0 0
v3 ∗ ∗ 0
v2 ∗ ∗ ∗
v4 ∗ ∗ ∗
v5 ∗ ∗ ∗
v6 0 ∗ ∗

ZUTA = “can permute cols and rows such that the upper right triangle of Λ is zero”
and w.l.o.g. “diagonal entries are nonzero”.
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Anderson-Rubin Criterion
Theorem [Anderson, Rubin (1956)]

A factor analysis graph G = (V ∪H, D) that satisfies ZUTA is generically sign-identifiable if for any deleted row
of the symbolic matrix Λ = (λvh) ∈ RD there exist two disjoint submatrices that are generically of rank |H|.

Example

h1

h2

v1 v2 v3 v4 v5 Λ =



λv1h1 0
λv2h1 λv2h2

λv3h1 λv3h2

0 λv4h2

0 λv5h2



Observation:
Need |V | ≥ 2|H|+ 1.
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Examples for Inconclusiveness of Anderson-Rubin
1) 

λv1h1 0 0
λv2h1 λv2h2 0

0 λv3h2 λv3h3

λv4h1 0 λv4h3

0 λv5h2 0
0 0 λv6h3


[Hosszejni, Frühwirth-Schnatter (2022)]

2) 

λv1h1 0 0
λv2h1 λv2h2 0
λv3h1 λv3h2 λv3h3

λv4h1 λv4h2 λv4h3

λv5h1 λv5h2 λv5h3

λv6h1 λv6h2 0



3) 

λv1h1 0 0 0
λv2h1 λv2h2 0 0

0 λv3h2 λv3h3 0
λv4h1 0 λv4h3 λv4h4

0 λv5h2 0 0
0 0 λv6h3 0
0 0 0 λv7h4

0 0 0 λv8h4

0 0 0 λv9h4
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Investigation of Anderson-Rubin
1) Anderson-Rubin: Fix v ∈ V . Find disjoint U , W ⊆ V \ {v} with |U | = |W | = |H| such that

det(ΛU,H) , 0 and det(ΛW ,H) , 0 (not the zero polynomial)

⇐⇒ det([ΛΛ⊤]U,W ) , 0.

2) Consider the matrix with exactly one diagonal entry:

[ΛΛ⊤]{v}∪U,{v}∪W =
 [ΛΛ⊤]vv [ΛΛ⊤]v ,W

[ΛΛ⊤]U,v [ΛΛ⊤]W ,U

 =
 [ΛΛ⊤]vv Σv ,W

ΣU,v ΣU,W

.

3) Solve for diagonal entry [ΛΛ⊤]vv by Laplace expansion:
0 = det([ΛΛ⊤]{v}∪U,{v}∪W ) = [ΛΛ⊤]vv det(ΣU,W )︸           ︷︷           ︸

,0

−
∑

w∈W
sign(w)σvw det(ΣU,{v}∪W \{w}).

4) Conclude: Solving for diagonal entries of ΛΛ⊤ is equivalent to solving for Ω.
=⇒ Equivalent to solving for Σ− Ω = ΛΛ⊤.
ZUTA=⇒ generic sign-identifiability (uniqueness of Cholesky decomposition).
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Main Idea for Sparse Setup
Local approach: Can also choose U , W such that |W | = |U | < |H|.

⇝ Ensure that det([ΛΛ⊤]U,W ) , 0 and that det([ΛΛ⊤]{v}∪U,{v}∪W ) = 0.

Characterization: When is det([ΛΛ⊤]A,B) = 0 if Λ is sparse?
⇝ Intersection-free matchings.

Definition
System of paths Π = {π1, . . . , πk} is matching of A = {a1, . . . , ak} ⊆ V and B = {b1, . . . , bk} ⊆ V if

πi = ai← hi→ bi .

A matching is intersection-free if all latent nodes hi are distinct.

Lemma
For two subsets A, B ⊆ V with |A| = |B| it holds that det([ΛΛ⊤]A,B) , 0 if and only if there is an
intersection-free matching of A and B.
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Matching Criterion
Definition
Fix a latent node h ∈ H. Tuple (v , U , W , S) ∈ V × 2V × 2V × 2H\{h} satisfies the matching criterion for h if

(i) pa(v) \ S = {h} and v < U ∪W ,

(ii) U and W are disjoint, nonempty sets of equal cardinality,

(iii) there exists an intersection-free matching of U and W that avoids S,

(iv) there does not exist an intersection-free matching of {v} ∪W and {v} ∪ U that avoids S.

S = “solved nodes”.

By (iii), det([ΛΛ⊤]U,W ) , 0.

By (iv), det([ΛΛ⊤]{v}∪U,{v}∪W ) = 0.
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Algorithm: Recursive Solving
Theorem (M-identifiability)
If the tuple (v , U , W , S) satisfies the matching criterion with respect to h and all nodes ℓ ∈ S are “solved
before”, then we can “solve” for h.
That is, (Ω̃, Λ̃) ∈ FG(Ω, Λ) =⇒ Λ̃ch(h),h = ±Λch(h),h.

Algorithm (M-ID)
- Cycle through latent nodes h and search for tuples (v , U , W , S).
- Network-flow setup finds suitable tuples in polynomial time under a bound on |U | = |W |.

Conjecture: If we do not bound the cardinality |U | = |W |, then M-ID is NP-complete.

Remarks
- Subsumes Anderson-Rubin.
- Together with an extension, subsumes anything we know (e.g. Bekker and ten Berge, 1997).
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Example

h1

h2

h3

v1 v2 v3 v4 v5 v6 Λ =



λv1h1 0 0
λv2h1 λv2h2 0
λv3h1 λv3h2 λv3h3

λv4h1 λv4h2 λv4h3

λv5h1 λv5h2 λv5h3

λv6h1 λv6h2 0


h1: Take v = v1, S = ∅ and U = {v2, v6}, W = {v3, v4}.

(iii) v2← h1→ v3, v6← h2→ v4; (iv) pa({v} ∪ U) ∩ pa({v} ∪W ) = {h1, h2}.

h2: Take v = v2, S = {h1} and U = {v3}, W = {v6}.
(iii) v3← h2→ v6; (iv) (pa({v} ∪ U) ∩ pa({v} ∪W )) \ S = {h2}.

h3: Take v = v3, S = {h1, h2} and U = {v4}, W = {v5}.
(iii) v4 ← h3 → v5; (iv) (pa({v} ∪ U) ∩ pa({v} ∪W )) \ S = {h3}.
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Conclusion
• Sparse factor analysis models are the “building block” for many latent variable models.

• Latent variable models generally feature complicated parametrizations.

• Even in “simple” factor analysis models, there is still lots to explore . . .

• Papers:

Sturma, Kranzlmueller, Portakal, Drton (2025).
Matching Criterion for Identifiability in Sparse Factor Analysis.
arXiv preprint arXiv:2502.02986.

Drton, Grosdos, Portakal, Sturma (2023).
Algebraic Sparse Factor Analysis.
arXiv preprint arXiv:2312.14762.
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