Testing Many and Possibly Singular Polynomial Constraints

at the 2023 German Probability and Statistics Days

Nils Sturma

Research group Mathematical Statistics
TUM School of Computation, Information and Technology
Technical University of Munich
(joint work with Mathias Drton and Dennis Leung)

Motivation: One-Factor Analysis Model

Model:

The family of multivariate normal distributions $N_{k}(0, \Sigma)$ whose covariance matrix lies in the set

$$
\left\{\Omega+\Gamma \Gamma^{\top}: \Omega>0 \text { diagonal, } \Gamma \in \mathbb{R}^{k \times 1}\right\}
$$

Topic of the talk: Testing the goodness-of-fit based on samples $X_{1}, \ldots, X_{n} \sim N_{k}(0, \Sigma)$.

Algebraic Characterization

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccccc}
\omega_{1}+\gamma_{1}^{2} & \gamma_{1} \gamma_{2} & \gamma_{1} \gamma_{3} & \gamma_{1} \gamma_{4} & \gamma_{1} \gamma_{5} \\
\gamma_{1} \gamma_{2} & \omega_{2}+\gamma_{2}^{2} & \gamma_{2} \gamma_{3} & \gamma_{2} \gamma_{4} & \gamma_{2} \gamma_{5} \\
\gamma_{1} \gamma_{3} & \gamma_{2} \gamma_{3} & \omega_{3}+\gamma_{3}^{2} & \gamma_{3} \gamma_{4} & \gamma_{3} \gamma_{5} \\
\gamma_{1} \gamma_{4} & \gamma_{2} \gamma_{4} & \gamma_{3} \gamma_{4} & \omega_{4}+\gamma_{4}^{2} & \gamma_{4} \gamma_{5} \\
\gamma_{1} \gamma_{5} & \gamma_{2} \gamma_{5} & \gamma_{3} \gamma_{5} & \gamma_{4} \gamma_{5} & \omega_{5}+\gamma_{5}^{2}
\end{array}\right)
$$

Observation:

Off-diagonal 2×2 minors (=tetrads) vanish:

$$
\operatorname{det}\left(\Sigma_{\{12\},\{3,4\}}\right)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}=\gamma_{1} \gamma_{3} \gamma_{2} \gamma_{4}-\gamma_{2} \gamma_{3} \gamma_{1} \gamma_{4}=0
$$

If Σ is in the one-factor analysis model, then all tetrads vanish simultaneously. That is,

$$
\sigma_{i j} \sigma_{k l}-\sigma_{i k} \sigma_{j l}=0
$$

for four distinct indices i, j, k, l.

General Setup: Testing Constraints on Statistical Models

Parametric family:

$\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$, where $\Theta \in \mathbb{R}^{d}$.
Model:
$\Theta_{0}=\left\{\theta \in \Theta: f_{j}(\theta) \leq 0,1 \leq j \leq p\right\} . \quad$ Main interest: Polynomial constraints f_{j}.

$$
\begin{aligned}
& \text { Based on samples } X_{1}, \ldots, X_{n} \sim P_{\theta} \text { test } \\
& \qquad H_{0}: \theta \in \Theta_{0} \text { vs. } H_{1}: \theta \in \Theta \backslash \Theta_{0} .
\end{aligned}
$$

Challenges:

Many constraints, irregular points, inequalities, ...

Likelihood-Ratio Test

$$
\lambda_{n}=-2 \log \left(\frac{\sup _{\theta \in \Theta^{\prime}} \mathcal{L}_{n}(\theta)}{\sup _{\theta \in \Theta} \mathcal{L}_{n}(\theta)}\right) .
$$

Limitations

X Likelihood function is not available or is difficult to maximize under Θ_{0}.
x Slow convergence if dimension of Θ is very large. (In particular, larger than the sample size n.)
X Asymptotic distribution depends on the true parameter.
(Polynomials: Irregular points of Θ_{0} are algebraic singularities.)

Likelihood-Ratio Test

$$
\lambda_{n}=-2 \log \left(\frac{\sup _{\theta \in \Theta^{\prime}} \mathcal{L}_{n}(\theta)}{\sup _{\theta \in \Theta} \mathcal{L}_{n}(\theta)}\right) .
$$

Limitations

x Likelihood function is not available or is difficult to maximize under Θ_{0}.
x Slow convergence if dimension of Θ is very large. (In particular, larger than the sample size n.)
X Asymptotic distribution depends on the true parameter.
(Polynomials: Irregular points of Θ_{0} are algebraic singularities.)

Invalidity at singularities

$$
n=1000
$$

Simulated p-values for testing the one-factor analysis model with $k=15$ observed variables close to a singular point.
"Plug-in" Test

$$
M_{n}=\max _{1 \leq j \leq p} \frac{\sqrt{n} f_{j}\left(\hat{\theta}_{n}\right)}{\left(\operatorname{vâr}\left[f_{j}\left(\hat{\theta}_{n}\right)\right]\right)^{1 / 2}}, \quad \text { where } \hat{\theta}_{n} \text { is a "good" estimator of } \theta \text {. }
$$

Tetrads: Gaussian approximation to derive critical values.
\checkmark High-dimensional approximation $(p \gg n)$.
\checkmark Inequality constraints.
\checkmark Optimization free.
X Asymptotic distribution depends on the true parameter.
"Plug-in" Test

$$
M_{n}=\max _{1 \leq j \leq p} \frac{\sqrt{n} f_{j}\left(\hat{\theta}_{n}\right)}{\left(\operatorname{vâr}\left[f_{j}\left(\hat{\theta}_{n}\right)\right]\right)^{1 / 2}}, \quad \text { where } \hat{\theta}_{n} \text { is a "good" estimator of } \theta \text {. }
$$

Tetrads: Gaussian approximation to derive critical values.
\checkmark High-dimensional approximation $(p \gg n)$.
\checkmark Inequality constraints.
\checkmark Optimization free.
x Asymptotic distribution depends on the true parameter.

Invalidity at singularities

Simulated p-values for testing tetrads with $k=15$ observed variables close to a singular point.

Connection to U-statistics

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

Observation:

$\hat{f}_{1}=\frac{n}{n-1} f_{1}\left(\hat{\Sigma}_{n}\right)=\frac{1}{\binom{n}{2}} \sum_{i<j} h_{1}\left(X_{i}, X_{j}\right)$ is a U-statistic with kernel

$$
h_{1}\left(X_{i}, X_{j}\right)=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} X_{j 2} X_{j 4}-X_{i 2} X_{i 3} X_{j 1} X_{j 4}\right)+\left(X_{j 1} X_{j 3} X_{i 2} X_{i 4}-X_{j 2} X_{j 3} X_{i 1} X_{i 4}\right)\right\}
$$

Connection to U-statistics

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

Observation:

$\hat{f}_{1}=\frac{n}{n-1} f_{1}\left(\hat{\Sigma}_{n}\right)=\frac{1}{\binom{n}{2}} \sum_{i<j} h_{1}\left(X_{i}, X_{j}\right)$ is a U-statistic with kernel

$$
h_{1}\left(X_{i}, X_{j}\right)=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} X_{j 2} X_{j 4}-X_{i 2} X_{i 3} X_{j 1} X_{j 4}\right)+\left(X_{j 1} X_{j 3} X_{i 2} X_{i 4}-X_{j 2} X_{j 3} X_{i 1} X_{i 4}\right)\right\}
$$

Asymptotics (one dimensional):
Gaussian approximation: $\sqrt{n}\left(\hat{f}_{1}-f_{1}(\Sigma)\right) \longrightarrow N\left(0, m^{2} \sigma_{g_{1}}^{2}\right)$
where m is the degree of the kernel h_{1} and $\sigma_{g_{1}}^{2}$ is the variance of the Hájek projection

$$
g_{1}\left(X_{i}\right)=\mathbb{E}\left[h_{1}\left(X_{i}, X_{j}\right) \mid X_{i}\right]=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} \sigma_{24}-X_{i 2} X_{i 3} \sigma_{14}\right)+\left(\sigma_{13} X_{i 2} X_{i 4}-\sigma_{23} X_{i 1} X_{i 4}\right)\right\}
$$

Irregular points: $\sigma_{g_{1}}^{2}=0 \Longrightarrow U$-statistic is degenerate \Longrightarrow Gaussian approximations fails.

Proposal: Incomplete U-statistics

Assumption: $f(\theta)=\left(f_{1}(\theta), \ldots, f_{p}(\theta)\right)^{\top}$ is estimable, i.e., there exists a symmetric kernel $h\left(x_{1}, \ldots, x_{m}\right)$ s.t.

$$
\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]=f(\theta) \quad \text { for all } \theta \in \Theta
$$

whenever X_{1}, \ldots, X_{m} are i.i.d. with distribution P_{θ}.

Randomized incomplete U-statistics:

- $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
- Computational budget parameter $N \leq\binom{ n}{m}$.
- $\left\{Z_{\iota}: \iota \in I_{n, m}\right\}$ are i.i.d. $\operatorname{Ber}\left(p_{n}\right)$ with $p_{n}=N /\binom{n}{m}$.
- $\hat{N}=\sum_{\iota \in I_{n, m}} Z_{l}$ is the number of successes.

Proposal: Incomplete U-statistics

Assumption: $f(\theta)=\left(f_{1}(\theta), \ldots, f_{p}(\theta)\right)^{\top}$ is estimable, i.e., there exists a symmetric kernel $h\left(x_{1}, \ldots, x_{m}\right)$ s.t.

$$
\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]=f(\theta) \quad \text { for all } \theta \in \Theta,
$$

whenever X_{1}, \ldots, X_{m} are i.i.d. with distribution P_{θ}.

Randomized incomplete U-statistics:

- $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
- Computational budget parameter $N \leq\binom{ n}{m}$.
- $\left\{Z_{\iota}: \iota \in I_{n, m}\right\}$ are i.i.d. $\operatorname{Ber}\left(p_{n}\right)$ with $p_{n}=N /\binom{n}{m}$.
- $\hat{N}=\sum_{l \in l_{n, m}} Z_{l}$ is the number of successes.

Asymptotics: $\sqrt{n}\left(U_{n, N, 1}^{\prime}-f_{1}(\Sigma)\right) \longrightarrow N\left(0, m^{2} \sigma_{g_{1}}^{2}+\frac{n}{N} \sigma_{h_{1}}^{2}\right)$.

Choose $N=\mathcal{O}(n)$ to guard against degeneracy!

Proposed Test

Test statistic

$$
\mathcal{T}=\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) U_{n, N, j}^{\prime} .
$$

Critical value

1. Approximate test statistic by maximum of Gaussian random vector $Y \sim N_{p}(0, \Gamma)$, where $\Gamma=m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}$.
2. Construct an estimate $\hat{\Gamma}$ of the true asymptotic covariance matrix Γ by a Gaussian multiplier bootstrap method. Then $W \sim N_{p}(0, \hat{\Gamma})$ is "close" to $Y \sim N_{p}(0, \Gamma)$.
3. Critical value: Quantile $c_{W_{0}}(1-\alpha)$ of $W_{0}=\max _{1 \leq j \leq p} \widehat{\sigma}_{j}^{-1} W_{j}$.

Our theoretical contribution

If $N=\mathcal{O}(n)$ then the proposed test based on an incomplete U-statistic is asymptotically valid (controls type I error) in high dimensions $p \gg n$ and under mixed degeneracy:

$$
P\left(\mathcal{T}>c_{W_{0}}(1-\alpha)\right) \leq \alpha
$$

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127-3156.
Assumption: Either non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Or degenerate: $\sigma_{g_{j}}^{2}=0$ for all $j=1, \ldots, p$.

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127-3156.
Assumption: Either non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Or degenerate: $\sigma_{g_{j}}^{2}=0$ for all $j=1, \ldots, p$.

Mixed degeneracy assumption

Let $p_{1}, p_{2} \in \mathbb{N}$ such that $p_{1}+p_{2}=p$ and assume:
(A) There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p_{1}$.
(B) There exists $k>0$ and $\beta>0$ such that $\left\|g_{j}\left(X_{1}\right)-f_{j}(\theta)\right\|_{\psi_{\beta}} \leq C n^{-k}$ for all $j=p_{1}+1, \ldots, p$.
$\Rightarrow \sigma_{\xi j}^{2} \leq \tilde{C}_{n} n^{-2 k}$
N. Sturma | Testing Constraints

High-dimensional Bootstrap Approximation

Theorem

Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation

$$
\sup _{R \in \mathbb{R}_{\mathrm{re}}^{p}}\left|P\left(\sqrt{n}\left(U_{n, N}^{\prime}-f(\theta)\right) \in R\right)-P(Y \in R)\right| \leq C\left\{\omega_{n, 1}+\omega_{n, 2}+\omega_{n, 3}\right\},
$$

where $Y \sim N_{p}\left(0, m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}\right)$ and

$$
\omega_{n, 1}=\left(\frac{m^{2 / \beta} \log (p n)^{1+6 / \beta}}{n \wedge N}\right)^{1 / 6}, \quad \omega_{n, 2}=\frac{N^{1 / 2} m^{2} \log (p n)^{1 / 2+2 / \beta}}{n^{\min \{1 / 2+k, 5 / 6, m / 3\}}}, \quad \omega_{n, 3}=\left(\frac{N m^{2} \log (p)^{2}}{n^{1+k}}\right)^{1 / 3}
$$

Note: If $N=\mathcal{O}(n)$ and $m \geq 3, k \geq 1 / 3$ are fixed constants, then the bound vanishes asymptotically if $\log (p n)^{3 / 2+6 / \beta}=\mathcal{O}(n)$.

High-dimensional Bootstrap Approximation

Theorem

Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation

$$
\sup _{R \in \mathbb{R}_{\mathrm{re}}^{p}}\left|P\left(\sqrt{n}\left(U_{n, N}^{\prime}-f(\theta)\right) \in R\right)-P(Y \in R)\right| \leq C\left\{\omega_{n, 1}+\omega_{n, 2}+\omega_{n, 3}\right\}
$$

where $Y \sim N_{p}\left(0, m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}\right)$ and

$$
\omega_{n, 1}=\left(\frac{m^{2 / \beta} \log (p n)^{1+6 / \beta}}{n \wedge N}\right)^{1 / 6}, \quad \omega_{n, 2}=\frac{N^{1 / 2} m^{2} \log (p n)^{1 / 2+2 / \beta}}{n^{\min \{1 / 2+k, 5 / 6, m / 3\}}}, \quad \omega_{n, 3}=\left(\frac{N m^{2} \log (p)^{2}}{n^{1+k}}\right)^{1 / 3}
$$

Note: If $N=\mathcal{O}(n)$ and $m \geq 3, k \geq 1 / 3$ are fixed constants, then the bound vanishes asymptotically if $\log (p n)^{3 / 2+6 / \beta}=\mathcal{O}(n)$.
This is the basis for the bootstrap approximation:

1. Further approximate Y by a Gaussian multiplier bootstrap $W \longrightarrow$ Similar bound under $N=\mathcal{O}(n)$.
2. Control studentization.
3. Establish asymptotic validity (control of type I error).

Our Test at Irregular Points

Simulated p-values for testing tetrads with $k=15$ observed variables close to a singular point.
Computational budget parameter $N=2 n$.

Size vs. Power

$$
n=500
$$

Empirical sizes vs. nominal levels for testing tetrads with $k=15$ observed variables. True parameter is close to a singular point.

Size vs. Power

Empirical sizes vs. nominal levels for testing tetrads with $k=15$ observed variables. True parameter is close to a singular point.

$$
n=500
$$

Empirical power for different local alternatives for testing tetrads with $k=15$ observed variables ($\alpha=0.05$). True parameter is a regular point.

Trade-off between efficiency and guarding against singularities.

Conclusion

\checkmark General strategy for simultaneous testing of many constraints $(p \gg n)$ ．
\checkmark Equality and inequality constraints．
\checkmark Optimization free．
Although computationally demanding for large p and large computational budget N ．
\checkmark Accommodate irregular settings where the incomplete U－statistics is mixed degenerate by choosing $N=\mathcal{O}(n)$ ．

Our paper and background reading：
固 Sturma，Drton，Leung（2022）．
Testing Many and Possibly Singular Polynomial Constraints．arXiv：2208．11756．
固 Leung，Drton（2018）．
Algebraic tests of general Gaussian latent tree models．NeurIPS 2018.
国 Drton（2009）．
Likelihood ratio tests and singularities．Ann．Statist．，37（2）：979－1012

N．Sturma｜Testing Constraints

Appendix: Kernels for Polynomial Hypotheses
Polynomial of total degree s :

$$
f_{j}(\theta)=a_{0}+\sum_{r=1}^{s} \sum_{\substack{\left(i_{1}, \ldots, i_{r}\right) \\ i_{1} \in\{1, \ldots, d\}}} a_{\left(i_{1}, \ldots, i_{r}\right)} \theta_{i_{1}} \cdots \theta_{i_{r}}
$$

Appendix: Kernels for Polynomial Hypotheses

Polynomial of total degree s:

$$
f_{j}(\theta)=a_{0}+\sum_{r=1}^{s} \sum_{\substack{\left.i_{1}, \ldots, i_{r}\right) \\ i_{1} \in\{1, \ldots, d\}}} a_{\left(i_{1}, \ldots, i_{r}\right)} \theta_{i_{1}} \cdots \theta_{i_{r}}
$$

Construct kernel h_{j} :

1) For a fixed integer $\eta \geq 1$, find unbiased estimators $\hat{\theta}_{i}\left(X_{1}^{\eta}\right)$ of θ_{i} for all $i=1, \ldots, d$.
2) For the degree $m=\eta s$, define the unbiased estimator

$$
\breve{h}_{j}\left(X_{1}^{m}\right)=a_{0}+\sum_{r=1}^{s} \sum_{\substack{\left(i_{1}, \ldots, i_{r}\right) \\ i \in\{1, \ldots, d\}}} a_{\left(i_{1}, \ldots, i_{r}\right)} \hat{\theta}_{i_{1}}\left(X_{1}^{\eta}\right) \widehat{\theta}_{i_{2}}\left(X_{\eta+1}^{2 \eta}\right) \cdots \hat{\theta}_{i_{r}}\left(X_{(r-1) \eta+1}^{r \eta}\right) .
$$

3) Symmetrizing: Average over all permutations of $\{1, \ldots, m\}$: $h_{j}\left(X_{1}^{m}\right)=\frac{1}{m!} \Sigma_{\pi \in S_{m}} \breve{h}_{j}\left(X_{\pi(1)}, \ldots, X_{\pi(m)}\right)$.

Polynomials are estimable.

