ITा

Unpaired Multi-Domain Causal Representation Learning

Nils Sturma ${ }^{1}$, Chandler Squires ${ }^{2}$, Mathias Drton ${ }^{1}$, Caroline Uhler ${ }^{2}$

Motivation
"Integrate data from different modalities to identify a shared causal representation."

- Causal representation: Structural causal model among Z;

Shared variables $Z_{\mathcal{L}}$ capture key causal relations.

- Observed domains: $X^{e}=g_{e}\left(Z_{S_{e}}\right)$ such that $\mathcal{L} \subseteq S_{e}$.
- Unpaired: Joint distribution of X^{e}, X^{f} unknown.

Goal: Identifiability of shared causal representation in a linear setup.

Main Contributions:

- Sufficient and necessary conditions for identifiability of joint distribution.
- Sufficient conditions for identifiability of the shared causal structure.

Setup and Graphical Perspective

Latent: $\left(Z_{h}\right)_{h \in \mathcal{H}}$, where $Z=A Z+\varepsilon$.
Observed: $X^{e} \in \mathbb{R}^{d_{e}}$, where $X^{e}=G^{e} \cdot Z_{S_{e}}$
$\mathcal{H} \supseteq S_{e}=\mathcal{L} \cup I_{e}=$ "shared" and "domain-specific".
m-domain graph:

- Nodes $\mathcal{H} \cup V_{1} \cup \cdots \cup V_{m}$, where $\left|V_{e}\right|=d_{e}$.
- Edges in \mathcal{H} encode sparsity in A (acyclic)
- Edges from \mathcal{H} to V_{e} encode sparsity in G^{e}
- No edges from domain-specific to shared latents.

Example: $\mathcal{L}=\{1,2\}$ and $I_{e}=\{3,4\}, I_{f}=\{5\}$

Important:

The graph, the set $\mathcal{L} \subseteq \mathcal{H}$ and the joint dis tribution $\left(X^{e}, X^{f}\right)$ for $e \neq f$ are unknown.

Finite Samples

Joint Distribution

Let G be the "large" mixing matrix, that is, $G_{V_{c} S_{k}}=G^{e}$
$\left(\begin{array}{c}X^{1} \\ \vdots \\ X^{m}\end{array}\right)=G \cdot Z=\underbrace{G \cdot(I-A)^{-1}}_{=: B} \cdot \varepsilon=\left(\begin{array}{c|ccc}B_{V_{1}, \mathcal{L}} & B_{V_{1}, I_{1}} & & \\ \vdots & & \cdots & \\ B_{V_{m}, \mathcal{L}} & & & B_{V_{m}, I_{m}}\end{array}\right) \cdot\left(\begin{array}{c}\varepsilon_{\mathcal{L}} \\ \varepsilon_{I_{1}} \\ \vdots \\ \varepsilon_{I_{m}}\end{array}\right)$
Approach/ Algorithm:

1. Linear ICA in each domain.
2. Identify shared columns and shared ε_{i} by matching distributions.
3. Reconstruct B up to unknown (block)-permutation of the columns.

Assumptions:

1) Error distributions P_{i} of ε_{i} are non-symmetric and pairwise different $\left(P_{i} \neq P_{j}\right.$ and $P_{i} \neq-P_{j} \forall i, j \in \mathcal{H}$). Additionally: non-degenerate, mean zero, unit variance and independent.
2) The matrix $G_{V_{e}, S_{e}}$ is of full column rank for each $e=1, \ldots, m$.

Theorem: " B and $P=\left(P_{h}\right)_{h \in \mathcal{H}}$ are identifiable up to signed blockpermutation."

Shared Latent Graph

We identify the shared causal graph $\mathcal{G}_{\mathcal{L}}$ from the matrix $\widehat{B}_{V, \mathcal{L}}=B_{V, \mathcal{L}} \Psi$, where Ψ is a signed permutation matrix.
Definition: $v \in V$ is a partial pure child of $h \in \mathcal{L}$ if $\operatorname{pa}(v) \cap \mathcal{L}=\{h\}$.

Example: v_{1}^{f} is a partial pure

Crucial Observation: $\operatorname{rank}\left(B_{\{v, w\}, \mathcal{L}}\right)=1 \Longleftrightarrow$ there is a node $h \in \mathcal{L}$ such that both v and w are partial pure children of h.
Assumptions:
3) Each shared latent node $h \in \mathcal{L}$ has two partial pure children.
4) Rank faithfulness of $B_{V, \mathcal{L}}$

Theorem: "The graph $\mathcal{G}_{\mathcal{L}}$ and A are identifiable up to a (signed) permutation that is consistent with the true graph $\mathcal{G}_{\mathcal{L}}$."

