Research group Mathematical Statistics TUM School of Computation, Information and Technology Technical University of Munich

Half-Trek Criterion for Identifiability of Latent Variable Models Rina Foygel Barber¹, Mathias Drton², Nils Sturma², Luca Weihs³

1. Motivation

Assumption: Known causal structure between observed and latent variables.

2. Setup

Linear structural equation model with observed variables $X = (X_v)_{v \in V}$ and latent variables $L = (L_h)_{h \in \mathcal{L}}$:

 $X = \Lambda^{\top} X + \Gamma^{\top} L + \varepsilon$

3. Rational Identifiability

Given: Latent-factor graph $G = (V \dot{\cup} \mathcal{L}, D)$.

Every latent-factor graph G yields a parametrization of the observed covariance matrix:

Latent-factor graph with 5 observed nodes and one latent node h.

Aim: Identify the direct causal effects between the observed variables based on the observed covariance matrix. (identify = uniquely recover)

Main contributions:

- Sufficient condition for rational identifiability in a linear setting.
- Applicable in settings where latent variables may also have dense effects on many or even all of the observables.
- Recursive polynomial time algorithm. (when bounding a matrix rank in a search step)

- Sparsity: Parameter matrices Λ and Γ are supported over the edge set D of a directed graph $G = (V \dot{\cup} \mathcal{L}, D)$.
- Latent-factor assumption: All nodes in \mathcal{L} are source nodes of G.
- Independence of the latent factors and the error terms: $Var[\varepsilon] =: \Omega_{diag}$ is diagonal and $\operatorname{Var}[L] = I.$

Latent covariance matrix:

 $\Omega \equiv \operatorname{Var}[\Gamma^{\top}L + \varepsilon]$ $= \operatorname{Var}[\varepsilon] + \Gamma^{\top} \operatorname{Var}[L] \Gamma = \Omega_{\operatorname{diag}} + \Gamma^{\top} \Gamma.$

Observed covariance matrix:

 $\Sigma \equiv \operatorname{Var}[X] = (I - \Lambda)^{-\top} \Omega (I - \Lambda)^{-1}.$

 $\varphi_G : (\Lambda, \Gamma, \Omega_{\mathsf{diag}}) \longmapsto \Sigma \equiv \mathsf{Var}[X].$

Definition. The model given by G is rationally identifiable if there is a rational map ψ_G such that

 $\psi_G \circ \varphi_G(\Lambda, \Gamma, \Omega_{\mathsf{diag}}) = \Lambda$

for 'almost all' $(\Lambda, \Gamma, \Omega_{diag})$.

Remark. Always solvable via Gröbner basis computations. • Double-exponential complexity.

• Only feasible on small graphs.

Software

SEMID

An R-package for parameter identifiability in linear structural equation models.

 \rightarrow available on CRAN \bigcirc and GitHub \bigcirc

4. Key Idea

Use algebraic relations in latent covariance

5. LF Half-Trek Criterion

Definition. A half-trek from node v to node w is

Example I

matrix.

Observe that

 $\Sigma = (I - \Lambda)^{-\top} \Omega (I - \Lambda)^{-1}$ $\iff \Omega = (I - \Lambda)^T \Sigma (I - \Lambda).$

Algebraic relations among entries of $\Omega = \Omega_{diag} + \Omega_{diag}$ $\Gamma^{+}\Gamma$ yield relations among entries of Λ and Σ :

 $f(\Omega) = 0 \iff f((I - \Lambda)^T \Sigma (I - \Lambda)) = 0.$

Observation:

The latent covariance matrix may be sparse and feature low-rank structure:

 $\Omega = \Omega_{\mathsf{diag}} + \Gamma^{\top}\Gamma = \Omega_{\mathsf{diag}} + \sum_{h \in \mathcal{L}} \gamma_h \gamma_h^{\top}$ = diag + sum of sparse rank 1 matrices.

 \longrightarrow We exploit algebraic relations that are vanishing off-diagonal sub-determinants of Ω .

Example:

a path of the form

$$v \rightarrow x_1 \rightarrow w$$
 or $v \rightarrow x_1 \rightarrow x_n$

Definition. Let $v \in V$ and $Y, Z \subseteq V \setminus \{v\}$ and $H \subseteq \mathcal{L}$. The triple (Y, Z, H) satisfies the late<u>nt-factor half-trek criterion</u> (LF-HTC) for v if

1. |Y| = |pa(v)| + |Z| and |Z| = |H|,

 $\mathbf{2.} Y \cap (Z \cup \{v\}) = \emptyset,$

3. $[\operatorname{pa}(Y) \cap \operatorname{pa}(Z \cup \{v\}) \cap \mathcal{L}] \subseteq H$,

4. There is system of half-treks from Y to $pa(v) \cup v$ Z without sided intersection and all half-treks ending in Z have form $y \leftarrow h \rightarrow z$ for $h \in H$.

Theorem. If the triple (Y, Z, H) satisfies the LF-HTC for $v \in V$, then column $\Lambda_{*,v}$ is a rational function of the observed covariance matrix Σ ,

 $v \in \{1, 4\}$: Trivially, $\Lambda_{*,1} = \Lambda_{*,4} = 0$.

<u>v = 3</u>: Take $Y = \{1, 2\}, Z = \{4\}, H = \{h\}$. (ii) $Y \cap (Z \cup \{3\}) = \{1, 2\} \cap \{3, 4\} = \emptyset$, (iv) $1 \leftarrow h \rightarrow 4, 2 \equiv 2$

v = 2 and v = 5: Can find (Y, Z, H) similarly.

 \implies The model is LF-HTC-identifiable, that is, the parameters λ_{12} , λ_{23} , and λ_{45} are recovered by rational functions in the entries of Σ .

Example II

(a) Rationally identifiable.

(b) Generically finite-

We have the following relations among Λ and Σ :

 $\det\left(\left[(I-\Lambda)^T\Sigma(I-\Lambda)\right]_{\{1,2\},\{3,4\}}\right)$ $= \lambda_{23}\sigma_{12}\sigma_{24} - \lambda_{23}\sigma_{14}\sigma_{22} - \sigma_{13}\sigma_{24} + \sigma_{14}\sigma_{23} = 0,$

which we can then solve for λ_{23} .

the columns $(\Lambda_{*,z})_{z\in Z}$ and the columns $\Lambda_{*,y}$ for those $y \in Y$ that can be reached from $Z \cup \{v\}$ using a half-trek that avoids H.

Algorithm. Recursively cycle through nodes vand search for LF-HTC triples that allow solving for $\Lambda_{*,v}$. Network-flow setup finds LF-HTC triples in polynomial time under a bound on |Z| = |H|.

to-one but not rationally identifiable.

(c) Generically infinite-toone.

¹Department of Statistics, University of Chicago ²TUM School of Computation, Information and Technology, Technical University of Munich ³Allen Institute for Al

YES Causal Inference Workshop March 13-15, 2023, Eindhoven