ाढा

Half-Trek Criterion for Identifiability of Latent Variable Models

Rina Foygel Barber ${ }^{1}$, Mathias Drton², Nils Sturma² ${ }^{2}$, Luca Weihs ${ }^{3}$

1. Motivation

Assumption: Known causal structure between observed and latent variables.

Latent-factor graph with 5 observed nodes and one latent node h.

Aim: Identify the direct causal effects between the observed variables based on the observed covariance matrix.
(identify = uniquely recover)

Main contributions:

- Sufficient condition for rational identifiability in a linear setting.
- Applicable in settings where latent variables may also have dense effects on many or even all of the observables.
- Recursive polynomial time algorithm. (when bounding a matrix rank in a search step)

4. Key Idea

Use algebraic relations in latent covariance

 matrix.Observe that

$$
\begin{aligned}
\Sigma & =(I-\Lambda)^{-\top} \Omega(I-\Lambda)^{-1} \\
& \Longleftrightarrow \Omega=(I-\Lambda)^{T} \Sigma(I-\Lambda) .
\end{aligned}
$$

Algebraic relations among entries of $\Omega=\Omega_{\text {diag }}+$ $\Gamma^{\top} \Gamma$ yield relations among entries of Λ and Σ :

$$
f(\Omega)=0 \Longleftrightarrow f\left((I-\Lambda)^{T} \Sigma(I-\Lambda)\right)=0
$$

Observation:
The latent covariance matrix may be sparse and feature low-rank structure:

$$
\begin{aligned}
\Omega & =\Omega_{\text {diag }}+\Gamma^{\top} \Gamma=\Omega_{\text {diag }}+\sum_{h \in \mathcal{L}} \gamma_{h} \gamma_{h}^{\top} \\
& =\text { diag }+ \text { sum of sparse rank } 1 \text { matrices } .
\end{aligned}
$$

\longrightarrow We exploit algebraic relations that are vanishing off-diagonal sub-determinants of Ω.

Example:
$\operatorname{rank}\left(\Omega_{\{1,2\},\{3,4\}}\right)=1$

$$
\Longrightarrow \operatorname{det}\left(\Omega_{\{1,2\},\{3,4\}}\right)=0 .
$$

We have the following relations among Λ and Σ : $\operatorname{det}\left(\left[(I-\Lambda)^{T} \Sigma(I-\Lambda)\right]_{\{1,2\},\{3,4\}}\right)$ $=\lambda_{23} \sigma_{12} \sigma_{24}-\lambda_{23} \sigma_{14} \sigma_{22}-\sigma_{13} \sigma_{24}+\sigma_{14} \sigma_{23}=0$,
which we can then solve for λ_{23}.

2. Setup

Linear structural equation model with observed variables $X=\left(X_{v}\right)_{v \in V}$ and latent variables $L=\left(L_{h}\right)_{h \in \mathcal{L}}$:

$$
X=\Lambda^{\top} X+\Gamma^{\top} L+\varepsilon
$$

- Sparsity: Parameter matrices Λ and Γ are supported over the edge set D of a directed graph $G=(V \dot{\cup} \mathcal{L}, D)$.
- Latent-factor assumption: All nodes in \mathcal{L} are source nodes of G.
- Independence of the latent factors and the error terms: $\operatorname{Var}[\varepsilon]=: \Omega_{\text {diag }}$ is diagonal and $\operatorname{Var}[L]=I$.

Latent covariance matrix:

$$
\begin{aligned}
\Omega & \equiv \operatorname{Var}\left[\Gamma^{\top} L+\varepsilon\right] \\
& =\operatorname{Var}[\varepsilon]+\Gamma^{\top} \operatorname{Var}[L] \Gamma=\Omega_{\mathrm{diag}}+\Gamma^{\top} \Gamma .
\end{aligned}
$$

Observed covariance matrix:

$$
\Sigma \equiv \operatorname{Var}[X]=(I-\Lambda)^{-\top} \Omega(I-\Lambda)^{-1}
$$

5. LF Half-Trek Criterion

Definition. A half-trek from node v to node w is a path of the form

A system of half-treks has no sided intersection if neither the left nor the right sides intersect.

Definition. Let $v \in V$ and $Y, Z \subseteq V \backslash\{v\}$ and $H \subseteq \mathcal{L}$. The triple (Y, Z, H) satisfies the latent-factor half-trek criterion (LF-HTC) for v if

1. $|Y|=|\mathrm{pa}(v)|+|Z|$ and $|Z|=|H|$,
2. $Y \cap(Z \cup\{v\})=\emptyset$,
3. $[\mathrm{pa}(Y) \cap \mathrm{pa}(Z \cup\{v\}) \cap \mathcal{L}] \subseteq H$,
4. There is system of half-treks from Y to $\mathrm{pa}(v) \cup$ Z without sided intersection and all half-treks ending in Z have form $y \leftarrow h \rightarrow z$ for $h \in H$.

Theorem. If the triple (Y, Z, H) satisfies the LFHTC for $v \in V$, then column $\Lambda_{*, v}$ is a rational function of the observed covariance matrix Σ, the columns $\left(\Lambda_{*, z}\right)_{z \in Z}$ and the columns $\Lambda_{*, y}$ for those $y \in Y$ that can be reached from $Z \cup\{v\}$ using a half-trek that avoids H.

Algorithm. Recursively cycle through nodes v and search for LF-HTC triples that allow solving for $\Lambda_{*, v}$. Network-flow setup finds LF-HTC triples in polynomial time under a bound on $|Z|=|H|$.

3. Rational Identifiability

Given: Latent-factor graph $G=(V \dot{\cup} \mathcal{L}, D)$.
Every latent-factor graph G yields a parametrization of the observed covariance matrix

$$
\varphi_{G}:\left(\Lambda, \Gamma, \Omega_{\mathrm{diag}}\right) \longmapsto \Sigma \equiv \operatorname{Var}[X] .
$$

Definition. The model given by G is rationally identifiable if there is a rational map $\psi_{G} \overline{\text { such that }}$

$$
\psi_{G} \circ \varphi_{G}\left(\Lambda, \Gamma, \Omega_{\text {diag }}\right)=\Lambda
$$

for 'almost all' ($\left.\Lambda, \Gamma, \Omega_{\text {diag }}\right)$.
Remark. Always solvable via Gröbner basis computations.

- Double-exponential complexity.
- Only feasible on small graphs

Software

SEMID

An R-package for parameter identifiability in linear structural equation models.
\longrightarrow available on CRAN \mathbb{R} and GitHub ()

Example I

$\underline{v \in\{1,4\}}:$ Trivially, $\Lambda_{*, 1}=\Lambda_{*, 4}=0$.
$\underline{v=3}$: Take $Y=\{1,2\}, Z=\{4\}, H=\{h\}$ (ii) $Y \cap(Z \cup\{3\})=\{1,2\} \cap\{3,4\}=\emptyset$, (iv) $1 \leftarrow h \rightarrow 4,2 \equiv 2$
$v=2$ and $v=5$: Can find (Y, Z, H) similarly.
\Longrightarrow The model is LF-HTC-identifiable, that is, the parameters $\lambda_{12}, \lambda_{23}$, and λ_{45} are recovered by rational functions in the entries of Σ.

Example II

(a) Rationally identifiable.

(b) Generically finite-to-one but not rationally identifiable

(c) Generically infinite-to-
one.

