## Unpaired Multi-Domain Causal Representation Learning

## Nils Sturma

Research group Mathematical Statistics
TUM School of Computation, Information and Technology
Technical University of Munich
(joint work with Chandler Squires, Mathias Drton and Caroline Uhler)


## Motivation: Single-Cell Biology



## Motivation: Single-Cell Biology



- Unpaired observations.
- Observations are of "different nature".
- "High-level", latent causal features that determine cell states.
$\longrightarrow$ Invariant to modality.

Different data modalities provide multiple "views" on shared latent space.

## Multi-Domain Causal Representation Learning



## Causal Representation

- Latent variables $Z$.
- Structural Causal Model.
- Shared variables $Z_{\mathcal{L}}$ capture key causal relations.


## Observed Data

- $X^{e}=g_{e}\left(Z_{S_{e}}\right)$ such that $\mathcal{L} \subseteq S_{e}$.
- Joint distribution of $X^{e}, X^{f}$ unknown. Integrate data from different modalities to identify causal representation.


## Identifiability

Suppose, we are in the "infinite data limit", that is, we know the true observational distribution in each domain.

## Questions:

- How large is the shared latent space?
- Can we identify the joint distribution?
- Can we identify the graph of the shared latent space?

Topic of this talk: Identifiability in the linear case.

## Setup: Linear Model

## Causal Model in Latent Space

Latent variables:

$$
Z=\left(Z_{i}\right)_{i \in \mathcal{H}}
$$

Structural equation model:

$$
Z=A Z+\varepsilon
$$

- (sparse) parameter matrix $A$
- error variables $\varepsilon_{i}$ are independent


## Setup: Linear Model

## Causal Model in Latent Space

Latent variables:

$$
Z=\left(Z_{i}\right)_{i \in \mathcal{H}}
$$

Structural equation model:

$$
Z=A Z+\varepsilon
$$

- (sparse) parameter matrix $A$
- error variables $\varepsilon_{i}$ are independent


## Observed Domains

Observed random vectors:

$$
X^{e} \in \mathbb{R}^{d_{e}} \text { for each domain } e=1, \ldots, m
$$

Linear mixing:

$$
X^{e}=G^{e} \cdot Z_{S_{e}}
$$

such that $S_{e}=\mathcal{L} \cup I_{e}$, where
$-\mathcal{L} \subseteq \mathcal{H}$ indexes the shared latent variables and
$-I_{e} \subseteq \mathcal{H} \backslash \mathcal{L}$ indexes the domain-specific latent variables.

## Graphical Perspective

## m-Domain Graph

- Nodes $\mathcal{H} \cup V_{1} \cup \cdots \cup V_{m}$, where $\left|V_{e}\right|=d_{e}$.
- Edges in $\mathcal{H}$ encode sparsity in $A$ (acyclic). (Recall: $Z=A Z+\varepsilon$.)
- Edges from $\mathcal{H}$ to $V_{e}$ encode sparsity in $G^{e}$. (Recall: $\chi^{e}=G^{e} . Z_{s_{e}}$.)
- The set $\mathcal{L} \subseteq \mathcal{H}$ consists of the shared latent nodes.
- Assumption: No edges from domain-specific to shared latent nodes.


## Graphical Perspective

## m-Domain Graph

- Nodes $\mathcal{H} \cup V_{1} \cup \cdots \cup V_{m}$, where $\left|V_{e}\right|=d_{e}$.
- Edges in $\mathcal{H}$ encode sparsity in $A$ (acyclic). (Recall: $Z=A Z+\varepsilon$.)
- Edges from $\mathcal{H}$ to $V_{e}$ encode sparsity in $G^{e}$. (Recall: $X^{e}=G^{e} \cdot Z_{S_{e}}$.)
- The set $\mathcal{L} \subseteq \mathcal{H}$ consists of the shared latent nodes.
- Assumption: No edges from domain-specific to shared latent nodes.


## Example



Compact version:


Latent variables: $\mathcal{L}=\{1,2\}$ are shared and $I_{e}=\{3,4\}, I_{f}=\{5\}$ are domain-specific.

## Graphical Perspective

## m-Domain Graph

- Nodes $\mathcal{H} \cup V_{1} \cup \cdots \cup V_{m}$, where $\left|V_{e}\right|=d_{e}$.
- Edges in $\mathcal{H}$ encode sparsity in $A$ (acyclic). (Recall: $Z=A Z+\varepsilon$.)
- Edges from $\mathcal{H}$ to $V_{e}$ encode sparsity in $G^{e}$. (Recall: $X^{e}=G^{e} \cdot Z_{S_{e}}$.)
- The set $\mathcal{L} \subseteq \mathcal{H}$ consists of the shared latent nodes.
- Assumption: No edges from domain-specific to shared latent nodes.


## Example



Compact version:


Latent variables: $\mathcal{L}=\{1,2\}$ are shared and $I_{e}=\{3,4\}, I_{f}=\{5\}$ are domain-specific.

Important: The graph, the set $\mathcal{L} \subseteq \mathcal{H}$ and the joint distribution $\left(X^{e}, X^{f}\right)$ for $e \neq f$ are unknown.

## Identifiability of the Joint Distribution

Joint Observations: Denote $G$ the "large" mixing matrix, that is, $G_{V_{e}, S_{e}}=G^{e}$. Then

$$
X=\left(\begin{array}{c}
X^{1} \\
\vdots \\
X^{m}
\end{array}\right)=G \cdot Z=\underbrace{G \cdot(I-A)^{-1}}_{=B} \cdot \varepsilon
$$

## Identifiability of the Joint Distribution

Joint Observations: Denote $G$ the "large" mixing matrix, that is, $G_{V_{e}, S_{e}}=G^{e}$. Then

$$
X=\left(\begin{array}{c}
X^{1} \\
\vdots \\
X^{m}
\end{array}\right)=G \cdot Z=\underbrace{G \cdot(I-A)^{-1}}_{=B} \cdot \varepsilon
$$

One Domain:

$$
X^{e}=G_{V_{e}, S_{e}} \cdot Z_{S_{e}}=G_{V_{e}, S_{e}} \cdot(I-A)_{S_{e}}^{-1} \cdot \varepsilon_{S_{e}}=B_{V_{e}, S_{e}} \cdot \varepsilon_{S_{e}}=\left(B_{V_{e}, \mathcal{L}} \mid B_{V_{e}, l_{e}}\right) \cdot\binom{\varepsilon_{\mathcal{L}}}{\varepsilon_{l_{e}}} .
$$

## Identifiability of the Joint Distribution

Joint Observations: Denote $G$ the "large" mixing matrix, that is, $G_{V_{e}, S_{e}}=G^{e}$. Then

$$
X=\left(\begin{array}{c}
X^{1} \\
\vdots \\
X^{m}
\end{array}\right)=G \cdot Z=\underbrace{G \cdot(I-A)^{-1}}_{=B} \cdot \varepsilon=\left(\begin{array}{c|ccc}
B_{V_{1}, \mathcal{L}} & B_{V_{1}, l_{1}} & & \\
\vdots & & \ddots & \\
B_{V_{m}, \mathcal{L}} & & & B_{V_{m}, I_{m}}
\end{array}\right) \cdot\left(\begin{array}{c}
\varepsilon_{\mathcal{L}} \\
\varepsilon_{I_{1}} \\
\vdots \\
\varepsilon_{I_{m}}
\end{array}\right) .
$$

One Domain:

$$
X^{e}=G_{V_{e}, S_{e}} \cdot Z_{S_{e}}=G_{V_{e}, S_{e}} \cdot(I-A)_{S_{e}}^{-1} \cdot \varepsilon_{S_{e}}=B_{V_{e}, S_{e}} \cdot \varepsilon_{S_{e}}=\left(B_{V_{e}, \mathcal{L}} \mid B_{V_{e}, l_{e}}\right) \cdot\binom{\varepsilon_{\mathcal{L}}}{\varepsilon_{l_{e}}} .
$$

## Approach/ Algorithm:

1. Apply linear ICA in each domain.
2. Identify shared columns and shared $\varepsilon_{i}$ by matching distributions.
3. Reconstruct $B$ up to unknown (block)-permutation of the columns.

## Identifiability Result for the Joint Distribution

## Assumptions

(C1) (Different distributions $P_{i}$ of errors $\varepsilon_{i}$.)

- Non-degenerate, mean zero, unit variance and independent.
- Non-symmetric $(\Longrightarrow$ non-Gaussian $), P_{i} \neq P_{j}$ and $P_{i} \neq-P_{j}$ for all $i, j \in \mathcal{H}$ with $i \neq j$.
(C2) (Full rank of mixing.)
The matrix $G_{V_{e}, S_{e}}$ is of full column rank for each $e=1, \ldots, m$.


## Identifiability Result for the Joint Distribution

## Assumptions

(C1) (Different distributions $P_{i}$ of errors $\varepsilon_{i}$.)

- Non-degenerate, mean zero, unit variance and independent.
- Non-symmetric $(\Longrightarrow$ non-Gaussian $), P_{i} \neq P_{j}$ and $P_{i} \neq-P_{j}$ for all $i, j \in \mathcal{H}$ with $i \neq j$.
(C2) (Full rank of mixing.)
The matrix $G_{V_{e}, S_{e}}$ is of full column rank for each $e=1, \ldots, m$.


## Theorem

Let $\mathcal{G}_{m}$ be an m-domain graph with shared latent nodes $\mathcal{L}=[\ell]$, and let $P_{X} \in \mathcal{M}\left(\mathcal{G}_{m}\right)$ with representation $(B, P)$. Suppose that $m \geq 2$ and that Conditions (C1) and (C2) are satisfied. Let $(\widehat{\ell}, \widehat{B}, \widehat{P})$ be the output of our
 algorithm. Then $\hat{\ell}=\ell$ and

$$
\widehat{B}=B \cdot \Psi \quad \text { and } \quad \widehat{P}=\Psi^{\top} \# P
$$

for a signed permutation block matrix $\Psi \in \Pi$.

## Identifiability Result for the Joint Distribution

## Assumptions

(C1) (Different distributions $P_{i}$ of errors $\varepsilon_{i}$.)

- Non-degenerate, mean zero, unit variance and independent.
- Non-symmetric $(\Longrightarrow$ non-Gaussian $), P_{i} \neq P_{j}$ and $P_{i} \neq-P_{j}$ for all $i, j \in \mathcal{H}$ with $i \neq j$.
(C2) (Full rank of mixing.)
The matrix $G_{V_{e}, S_{e}}$ is of full column rank for each $e=1, \ldots, m$.


## Theorem

Let $\mathcal{G}_{m}$ be an m-domain graph with shared latent nodes $\mathcal{L}=[\ell]$, and let $P_{X} \in \mathcal{M}\left(\mathcal{G}_{m}\right)$ with representation $(B, P)$. Suppose that $m \geq 2$ and that Conditions (C1) and (C2) are satisfied. Let $(\widehat{\ell}, \widehat{B}, \widehat{P})$ be the output of our algorithm. Then $\hat{\ell}=\ell$ and

$$
\widehat{B}=B \cdot \Psi \quad \text { and } \quad \widehat{P}=\Psi^{\top} \# P
$$

for a signed permutation block matrix $\Psi \in \Pi$.


## Identifiability of the Shared Latent Graph

Goal: Identify the DAG of the shared latent space $\mathcal{G}_{\mathcal{L}}$.
Starting point: We know the columns corresponding to the shared latent space:

$$
\widehat{B}_{\mathcal{L}}=B_{\mathcal{L}} \cdot \Psi_{\mathcal{L}}=G_{\mathcal{L}} \cdot\left(I-A_{\mathcal{L}, \mathcal{L}}\right)^{-1} \cdot \Psi_{\mathcal{L}}, \quad \text { where } G_{\mathcal{L}}=\left(\begin{array}{c}
G_{V_{1}, \mathcal{L}} \\
\vdots \\
G_{V_{m}, \mathcal{L}}
\end{array}\right) .
$$

## Example



Given the matrix $\widehat{B}_{\mathcal{L}}$, when is it possible to identify the causal graph $\mathcal{G}_{\mathcal{L}}$ ? (Or the matrix $A_{\mathcal{L}, \mathcal{L}}$ )?

## Partial Pure Children

## Literature

Sufficient conditions in recent work are based on sparsity assumptions on the mixing matrix ("pure children"). [Xie et al., ICML 2022; Dai et al. NeurlPS 2022].

## Definitions

$v \in V$ is a pure child of $h \in \mathcal{H}$ if $\mathrm{pa}(v)=\{h\}$.
$v \in V$ is a partial pure child of $h \in \mathcal{H}$ if $\mathrm{pa}(v) \cap \mathcal{L}=\{h\}$.

## Partial Pure Children

## Literature

Sufficient conditions in recent work are based on sparsity assumptions on the mixing matrix ("pure children"). [Xie et al., ICML 2022; Dai et al. NeurIPS 2022].

## Definitions

$v \in V$ is a pure child of $h \in \mathcal{H}$ if $\operatorname{pa}(v)=\{h\}$.
$v \in V$ is a partial pure child of $h \in \mathcal{H}$ if $\operatorname{pa}(v) \cap \mathcal{L}=\{h\}$.

## Example


$v_{1}^{f}$ is a partial pure child but not a pure child of 1 .

## Identifiability Result for the Shared Latent Graph

## Observation

 $\operatorname{rank}\left(B_{\{v, w\}, \mathcal{L}}\right)=1$ if and only if there is a node $h \in \mathcal{L}$ such that both $v$ and $w$ are partial pure children of $h$. (trek separation, vertex cuts)
## Identifiability Result for the Shared Latent Graph

## Observation

$\operatorname{rank}\left(B_{\{v, w\}, \mathcal{L}}\right)=1$ if and only if there is a node $h \in \mathcal{L}$ such that both $v$ and $w$ are partial pure children of $h$. (trek separation, vertex cuts)

## Algorithm

1. For each $h \in \mathcal{L}$ find two corresponding partial pure children (rank constraints).
2. Consider $\widehat{B}_{I, \mathcal{L}}$, where $I=\left\{i_{1}, \ldots, i_{\mathcal{L} \mid}\right\}$ and $i_{h}$ is a pure children of $h \in \mathcal{L}$.
3. Find permutation matrices $R_{1}, R_{2}$ such that $W=R_{1} \widehat{B}_{1, \mathcal{L}} R_{2}$ lower triangular.
4. Ensure that all diagonal entries are equal to 1 . This yields a new matrix $\widetilde{W}$.
5. $\widehat{A}_{\mathcal{L}, \mathcal{L}}=I-\widetilde{W}^{-1}$.

## Identifiability Result for the Shared Latent Graph

## Observation

$\operatorname{rank}\left(B_{\{v, w\}, \mathcal{L}}\right)=1$ if and only if there is a node $h \in \mathcal{L}$ such that both $v$ and $w$ are partial pure children of $h$. (trek separation, vertex cuts)

## Algorithm

1. For each $h \in \mathcal{L}$ find two corresponding partial pure children (rank constraints).
2. Consider $\widehat{B}_{I, \mathcal{L}}$, where $I=\left\{i_{1}, \ldots, i_{\mathcal{L} \mid}\right\}$ and $i_{h}$ is a pure children of $h \in \mathcal{L}$.
3. Find permutation matrices $R_{1}, R_{2}$ such that $W=R_{1} \widehat{B}_{l, \mathcal{L}} R_{2}$ lower triangular.
4. Ensure that all diagonal entries are equal to 1 . This yields a new matrix $\widetilde{W}$.
5. $\widehat{A}_{\mathcal{L}, \mathcal{L}}=I-\widetilde{W}^{-1}$.

## Theorem

Suppose we are given $\widehat{B}_{\mathcal{L}}$. Assume rank faithfulness and that each shared latent node has at least two partial pure children (across domains). Then $A_{\mathcal{L}, \mathcal{L}}$ is identifiable up to a signed permutation $\sigma$ that "is consistent with the $D A G G_{\mathcal{L}}$ ", i.e., $\hat{A}_{\mathcal{L}, \mathcal{L}}=Q_{\sigma}^{\top} A_{\mathcal{L}, \mathcal{L}} Q_{\sigma}$.

## Finite Samples

1. Choose Linear ICA algorithm, "match" empirical distributions by non-parametric test.
2. Determine the rank of a matrix as the number of singular values above a threshold.

## Finite Samples

1. Choose Linear ICA algorithm, "match" empirical distributions by non-parametric test.
2. Determine the rank of a matrix as the number of singular values above a threshold.

## Synthetic Data






- 1000 random models, $I=|\mathcal{L}|=3$ shared and $\left|I_{e}\right|=2$ domain-specific latent nodes, 10 observed nodes in each domain.
- m-domain graph is samplesd from Erdős-Rényi model with edge probability 0.75 (ensuring two pure children).
- Nonzero entries of $A$ and $G$ are samples from Unif( $\pm[0.25,1])$. Beta, Gumbel, Weibull, exponential, skew normal distributions for errors $\varepsilon_{i}$.


## Conclusion

- First principled identifiability results for shared causal representations in an unpaired multi-domain setting.
- Two-step approach: (i) Joint distribution via linear ICA.
(ii) Shared causal graph via rank deficiencies.
- Lots of things to explore...
- Expand identifiability theory: Necessary conditions? Gaussian case? More direct approach?
- Finite samples: Score based methods?
- Address non-linear setup.
- ...

Our paper:
: Sturma, Squires, Drton, Uhler (2023).
Unpaired Multi-Domain Causal Representation Learning. arXiv:2302.00993.
N. Sturma | Multi-Domain CRL

## References

[ Yang, Belyaeva, Venkatachalapathy, Damodaran, Katcoff, Radhakrishnan, Shivashankar, Uhler (2021). Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12, no. 31.

远 Xie, Huang, Chen, He, Geng, Zhang (2022). Identification of Linear Non-Gaussian Latent Hierarchical Structure. ICML.
[ Dai, Spirtes, Zhang (2022).
Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models. NeurIPS.

