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Motivation: Single-Cell Biology

[Yang et al., Nat. Commun. 2021]

• Unpaired observations.

• Observations are of “different nature”.

• “High-level”, latent causal features that
determine cell states.

−→ Invariant to modality.

Different data modalities provide multiple “views” on shared latent space.
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Multi-Domain Causal Representation Learning

Causal Representation

• Latent variables Z .

• Structural Causal Model.

• Shared variables ZL capture key causal relations.

Observed Data

• X e = ge(ZSe) such that L ⊆ Se.

• Joint distribution of X e, X f unknown.

Integrate data from different modalities to identify causal representation.
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Identifiability

Suppose, we are in the “infinite data limit”, that is, we know the true observational distribution in each
domain.

Questions:

• How large is the shared latent space?

• Can we identify the joint distribution?

• Can we identify the graph of the shared latent space?

Topic of this talk: Identifiability in the linear case.
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Setup: Linear Model
Causal Model in Latent Space

Latent variables:

Z = (Zi)i∈H

Structural equation model:

Z = AZ + ε

− (sparse) parameter matrix A
− error variables εi are independent

Observed Domains

Observed random vectors:

X e ∈ Rde for each domain e = 1, . . . , m

Linear mixing:

X e = Ge · ZSe ,

such that Se = L ∪ Ie, where

− L ⊆ H indexes the shared latent variables and
− Ie ⊆ H \ L indexes the domain-specific latent

variables.

N. Sturma | Multi-Domain CRL 4 / 12



Setup: Linear Model
Causal Model in Latent Space

Latent variables:

Z = (Zi)i∈H

Structural equation model:

Z = AZ + ε

− (sparse) parameter matrix A
− error variables εi are independent

Observed Domains

Observed random vectors:

X e ∈ Rde for each domain e = 1, . . . , m

Linear mixing:

X e = Ge · ZSe ,

such that Se = L ∪ Ie, where

− L ⊆ H indexes the shared latent variables and
− Ie ⊆ H \ L indexes the domain-specific latent

variables.

N. Sturma | Multi-Domain CRL 4 / 12



Graphical Perspective
m-Domain Graph

• Nodes H ∪ V1 ∪ · · · ∪ Vm, where |Ve| = de.

• Edges in H encode sparsity in A (acyclic).
(Recall: Z = AZ + ε.)

• Edges from H to Ve encode sparsity in Ge.
(Recall: X e = Ge · ZSe .)

• The set L ⊆ H consists of the shared latent
nodes.

• Assumption: No edges from domain-specific to
shared latent nodes.

Example

3 4 1 2 5

v e
1 v e

2 v e
3 v e

4

v f
1 v f

2 v f
3 v f

4 v f
5

Compact version:

3 4 1 2 5

Ve Vf

Latent variables: L = {1, 2} are shared and
Ie = {3, 4}, If = {5} are domain-specific.

Important: The graph, the set L ⊆ H and the joint distribution (X e, X f ) for e , f are unknown.
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Identifiability of the Joint Distribution
Joint Observations: Denote G the “large” mixing matrix, that is, GVe ,Se = Ge. Then

X =


X 1
...

X m

 = G · Z = G · (I − A)−1︸               ︷︷               ︸
=B

· ε

One Domain:

X e = GVe ,Se · ZSe = GVe ,Se · (I − A)−1
Se

· εSe = BVe ,Se · εSe =
(

BVe ,L BVe ,Ie
)

·
εL

εIe

 .
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Joint Observations: Denote G the “large” mixing matrix, that is, GVe ,Se = Ge. Then

X =


X 1
...

X m

 = G · Z = G · (I − A)−1︸               ︷︷               ︸
=B

· ε =


BV1,L BV1,I1... . . .
BVm,L BVm,Im

 ·


εL
εI1...
εIm
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One Domain:

X e = GVe ,Se · ZSe = GVe ,Se · (I − A)−1
Se

· εSe = BVe ,Se · εSe =
(

BVe ,L BVe ,Ie
)

·
εL

εIe

 .

Approach/ Algorithm:
1. Apply linear ICA in each domain.
2. Identify shared columns and shared εi by matching distributions.
3. Reconstruct B up to unknown (block)-permutation of the columns.
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Identifiability Result for the Joint Distribution
Assumptions

(C1) (Different distributions Pi of errors εi .)
− Non-degenerate, mean zero, unit variance and independent.
− Non-symmetric (=⇒ non-Gaussian), Pi , Pj and Pi , −Pj for all i , j ∈ H with i , j .

(C2) (Full rank of mixing.)
The matrix GVe ,Se is of full column rank for each e = 1, . . . , m.

Theorem
Let Gm be an m-domain graph with shared latent nodes L = [ℓ], and let
PX ∈ M(Gm) with representation (B, P). Suppose that m ≥ 2 and that
Conditions (C1) and (C2) are satisfied. Let (ℓ̂, B̂, P̂) be the output of our
algorithm. Then ℓ̂ = ℓ and

B̂ = B · Ψ and P̂ = Ψ⊤#P,

for a signed permutation block matrix Ψ ∈ Π.

Π =




ΨL
ΨI1

. . .
ΨIm

 : ΨL ∈ SP(|L|),
ΨIe ∈ SP(|Ie |)

 .

✔ Number of shared
latent vars ℓ = |L|.

✔ Joint distribution.
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Identifiability of the Shared Latent Graph
Goal: Identify the DAG of the shared latent space GL.

Starting point: We know the columns corresponding to the shared latent space:

B̂L = BL · ΨL = GL · (I − AL,L)−1 · ΨL, where GL =


GV1,L

...
GVm,L

 .

Example

3 4 1 2 5

Ve Vf

Given the matrix B̂L, when is it possible to identify the causal graph GL? (Or the matrix AL,L)?
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Partial Pure Children
Literature
Sufficient conditions in recent work are based on sparsity assumptions on the mixing matrix (“pure children”).
[Xie et al., ICML 2022; Dai et al. NeurIPS 2022].

Definitions
v ∈ V is a pure child of h ∈ H if pa(v) = {h}.
v ∈ V is a partial pure child of h ∈ H if pa(v) ∩ L = {h}.

Example

3 4 1 2 5

v e
1 v e

2 v e
3 v e

4

v f
1 v f

2 v f
3 v f

4 v f
5

v f
1 is a partial pure child but not a pure child of 1.
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Identifiability Result for the Shared Latent Graph
Observation
rank(B{v ,w},L) = 1 if and only if there is a node h ∈ L such that both v and w are partial pure children of h.
(trek separation, vertex cuts)

Algorithm
1. For each h ∈ L find two corresponding partial pure children (rank constraints).
2. Consider B̂I,L, where I = {i1, . . . , i|L|} and ih is a pure children of h ∈ L.
3. Find permutation matrices R1, R2 such that W = R1B̂I,LR2 lower triangular.
4. Ensure that all diagonal entries are equal to 1. This yields a new matrix W̃ .
5. ÂL,L = I − W̃ −1.

Theorem
Suppose we are given B̂L. Assume rank faithfulness and that each shared latent node has at least
two partial pure children (across domains). Then AL,L is identifiable up to a signed permutation σ that “is
consistent with the DAG GL”, i.e., ÂL,L = Q⊤

σ AL,LQσ.
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Finite Samples
1. Choose Linear ICA algorithm, “match” empirical distributions by non-parametric test.

2. Determine the rank of a matrix as the number of singular values above a threshold.

Synthetic Data

• 1000 random models, l = |L| = 3 shared and |Ie | = 2 domain-specific latent nodes, 10 observed nodes in each domain.
• m-domain graph is samplesd from Erdős-Rényi model with edge probability 0.75 (ensuring two pure children).
• Nonzero entries of A and G are samples from Unif(±[0.25, 1]). Beta, Gumbel, Weibull, exponential, skew normal distributions for errors εi .
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Conclusion
• First principled identifiability results for shared causal representations in an unpaired multi-domain setting.

• Two-step approach: (i) Joint distribution via linear ICA.
(ii) Shared causal graph via rank deficiencies.

• Lots of things to explore...

− Expand identifiability theory: Necessary conditions? Gaussian case? More direct approach?
− Finite samples: Score based methods?
− Address non-linear setup.
− . . .

Our paper:

Sturma, Squires, Drton, Uhler (2023).
Unpaired Multi-Domain Causal Representation Learning. arXiv:2302.00993.
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