Testing Many Possibly Irregular Polynomial Constraints

Nils Sturma

Research group Mathematical Statistics
TUM School of Computation, Information and Technology
Technical University of Munich
(joint work with Mathias Drton and Dennis Leung)

Curve with a Singular Point: Lemniscate of Gerono

Parametrization

$$
x=\frac{t^{2}-1}{t^{2}+1}, \quad y=\frac{2 t\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}
$$

Characterization by Constraints

$$
x^{4}-x^{2}+y^{2}=0
$$

Statistical Example: One-Factor Analysis Model

Parametrization

$$
\Sigma=\Omega+\Gamma \Gamma^{\top},
$$

where $\Omega>0$ diagonal and $\Gamma \in \mathbb{R}^{k \times 1}$.

Characterization by Constraints

Equality constraints (tetrads):

$$
\sigma_{u v} \sigma_{w z}-\sigma_{u w} \sigma_{v z}=0
$$

Inequality constraints:

$$
-\sigma_{u v} \sigma_{v w} \sigma_{u w} \leq 0, \quad \sigma_{u v}^{2} \sigma_{v w}^{2}-\sigma_{v v}^{2} \sigma_{u w}^{2} \leq 0
$$

Statistical Example: One-Factor Analysis Model

Parametrization

$$
\Sigma=\Omega+\Gamma \Gamma^{\top},
$$

where $\Omega>0$ diagonal and $\Gamma \in \mathbb{R}^{k \times 1}$.

Characterization by Constraints

Equality constraints (tetrads):

$$
\sigma_{u v} \sigma_{w z}-\sigma_{u w} \sigma_{v z}=0
$$

Inequality constraints:

$$
-\sigma_{u v} \sigma_{v w} \sigma_{u w} \leq 0, \quad \sigma_{u v}^{2} \sigma_{v w}^{2}-\sigma_{v v}^{2} \sigma_{u w}^{2} \leq 0
$$

$$
\underline{\text { Topic of the talk: }} \text { Testing the goodness-of-fit based on samples } X_{1}, \ldots, X_{n} \sim N_{k}(0, \Sigma) .
$$

Statistical Example: One-Factor Analysis Model

Further Examples

- Gaussian Latent Tree Models

Characterized by vanishing of certain tetrads and inequality constraints on the covariance matrix. (Long paths \longrightarrow small correlations)
Shiers, Zwiernik, Aston, Smith (2016).
The correlation space of Gaussian latent tree models and model selection without fitting. Biometrika, 103(3):531-545.

Further Examples

- Gaussian Latent Tree Models

Characterized by vanishing of certain tetrads and inequality constraints on the covariance matrix. (Long paths \longrightarrow small correlations)
Shiers, Zwiernik, Aston, Smith (2016).
The correlation space of Gaussian latent tree models and model selection without fitting. Biometrika, 103(3):531-545.

- Linear Non-Gaussian Structural Equation Models

$X=\Lambda^{\top} X+\varepsilon$

Denote $S=\left(s_{i j}\right)$ and $T=\left(t_{i j l}\right)$ the second and third order moments of X.
\(\operatorname{rk}\left(\begin{array}{cccccccc}s_{11} \& s_{12} \& \cdots \& s_{1 k} \& s_{22} \& s_{23} \& \cdots \& s_{k k}

t_{111} \& t_{112} \& \cdots \& t_{11 k} \& t_{122} \& t_{123} \& \cdots \& t_{1 k k}

\vdots \& \vdots \& \ddots \& \vdots \& \vdots \& \vdots \& \ddots \& \vdots

t_{11 k} \& t_{12 k} \& \cdots \& t_{1 k k} \& t_{22 k} \& t_{23 k} \& \cdots \& t_{k k k}\end{array}\right)=k \quad\)| $t_{111} t_{222} t_{333} t_{123}-\left(t_{222} t_{333} t_{112} t_{113}+t_{333} t_{111} t_{122} t_{223}+\right.$ |
| :--- |
| $\left.t_{111} t_{222} t_{333} t_{233}\right)-t_{123}\left(t_{111} t_{223} t_{233}+t_{222} t_{133} t_{113}+\right.$ |
| $\left.t_{333} t_{112} t_{122}\right)+\ldots=0 \quad$ (Aronhold invariant) |

Master Thesis Daniela Schkoda (2022).
Goodness-of-fit tests for non-Gaussian linear causal models.

General Setup: Testing Constraints on Statistical Models

Parametric family:

$$
\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\} \text {, where } \Theta \in \mathbb{R}^{d} .
$$

Model:

$$
\Theta_{0}=\left\{\theta \in \Theta: f_{j}(\theta) \leq 0 \text { for all } 1 \leq j \leq p\right\} .
$$

Our main interest: Polynomial constraints f_{j}.

$$
\begin{aligned}
& \text { Based on samples } X_{1}, \ldots, X_{n} \sim P_{\theta} \text { test } \\
& \qquad H_{0}: \theta \in \Theta_{0} \text { vs. } H_{1}: \theta \in \Theta \backslash \Theta_{0}
\end{aligned}
$$

Likelihood-Ratio Test

$$
\lambda_{n}=-2 \log \left(\frac{\sup _{\theta \in \Theta_{0}} \mathcal{L}_{n}(\theta)}{\sup _{\theta \in \Theta} \mathcal{L}_{n}(\theta)}\right)
$$

Likelihood-Ratio Test

$$
\lambda_{n}=-2 \log \left(\frac{\sup _{\theta \in \Theta^{\prime}} \mathcal{L}_{n}(\theta)}{\sup _{\theta \in \Theta} \mathcal{L}_{n}(\theta)}\right) .
$$

Simulated p-values (one-factor analysis model, Bartlett correction):

Wald Test

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

$$
W_{n}=\frac{f_{1}(\hat{\Sigma})^{2}}{\operatorname{var}\left[f_{1}(\hat{\Sigma})\right]}=\frac{n f_{1}(\hat{\Sigma})^{2}}{\left(\nabla f_{1}(\hat{\Sigma})\right)^{\top} V(\hat{\Sigma}) \nabla f_{1}(\hat{\Sigma})}, \quad \text { where } \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} .
$$

Wald Test

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

$$
W_{n}=\frac{f_{1}(\hat{\Sigma})^{2}}{\operatorname{var}\left[f_{1}(\hat{\Sigma})\right]}=\frac{n f_{1}(\hat{\Sigma})^{2}}{\left(\nabla f_{1}(\hat{\Sigma})\right)^{\top} V(\hat{\Sigma}) \nabla f_{1}(\hat{\Sigma})}, \quad \text { where } \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} .
$$

Limitations

X Invalid at singular points $\left(\nabla f_{1}(\Sigma)=0\right)$.
$W_{n} \rightarrow_{d} F$ where $\frac{1}{4} \chi_{1}^{2} \prec_{s t} F \prec_{s t} \chi_{1}^{2}$ (D. \& Xiao, 2016)
x Only allows for low number of constraints ($p \leq d$).
x Difficult to handle inequality constraints.

Σ close to a singular point.

Connection to U-statistics

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

Observation:

$\hat{f}_{1}=\frac{n}{n-1} f_{1}\left(\hat{\Sigma}_{n}\right)=\frac{1}{\binom{n}{2}} \sum_{i<j} h_{1}\left(X_{i}, X_{j}\right)$ is a U-statistic with kernel

$$
h_{1}\left(X_{i}, X_{j}\right)=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} X_{j 2} X_{j 4}-X_{i 2} X_{i 3} X_{j 1} X_{j 4}\right)+\left(X_{j 1} X_{j 3} X_{i 2} X_{i 4}-X_{j 2} X_{j 3} X_{i 1} X_{i 4}\right)\right\}
$$

Connection to U-statistics

Tetrad: $f_{1}(\Sigma)=\sigma_{13} \sigma_{24}-\sigma_{23} \sigma_{14}$.

Observation:

$\hat{f}_{1}=\frac{n}{n-1} f_{1}\left(\hat{\Sigma}_{n}\right)=\frac{1}{\binom{n}{2}} \sum_{i<j} h_{1}\left(X_{i}, X_{j}\right)$ is a U-statistic with kernel

$$
h_{1}\left(X_{i}, X_{j}\right)=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} X_{j 2} X_{j 4}-X_{i 2} X_{i 3} X_{j 1} X_{j 4}\right)+\left(X_{j 1} X_{j 3} X_{i 2} X_{i 4}-X_{j 2} X_{j 3} X_{i 1} X_{i 4}\right)\right\}
$$

Asymptotics (one dimensional):
Gaussian approximation: $\sqrt{n}\left(\hat{f}_{1}-f_{1}(\Sigma)\right) \longrightarrow N\left(0, m^{2} \sigma_{g_{1}}^{2}\right)$
where m is the degree of the kernel h_{1} and $\sigma_{g_{1}}^{2}$ is the variance of the Hájek projection

$$
g_{1}\left(X_{i}\right)=\mathbb{E}\left[h_{1}\left(X_{i}, X_{j}\right) \mid X_{i}\right]=\frac{1}{2}\left\{\left(X_{i 1} X_{i 3} \sigma_{24}-X_{i 2} X_{i 3} \sigma_{14}\right)+\left(\sigma_{13} X_{i 2} X_{i 4}-\sigma_{23} X_{i 1} X_{i 4}\right)\right\}
$$

Irregular points: $\sigma_{g_{1}}^{2}=0 \Longrightarrow U$-statistic is degenerate \Longrightarrow Gaussian approximations fails.

Estimable Constraints and U-statistics

Assumption: $f(\theta)=\left(f_{1}(\theta), \ldots, f_{p}(\theta)\right)^{\top}$ is estimable.
That is, for some integer m there exists a measurable, symmetric function $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ such that

$$
\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]=f(\theta) \quad \text { for all } \theta \in \Theta,
$$

whenever X_{1}, \ldots, X_{m} are i.i.d. with distribution P_{θ}.

Estimable Constraints and U-statistics

Assumption: $f(\theta)=\left(f_{1}(\theta), \ldots, f_{p}(\theta)\right)^{\top}$ is estimable.
That is, for some integer m there exists a measurable, symmetric function $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ such that

$$
\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]=f(\theta) \quad \text { for all } \theta \in \Theta,
$$

whenever X_{1}, \ldots, X_{m} are i.i.d. with distribution P_{θ}.

U-statistics: $U_{n}=\frac{1}{\binom{m}{m}} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{n, m}} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \quad$ where $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
\longrightarrow Reject for "large" values of $\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) U_{n, j}$.

Estimable Constraints and U-statistics

Assumption: $f(\theta)=\left(f_{1}(\theta), \ldots, f_{p}(\theta)\right)^{\top}$ is estimable.
That is, for some integer m there exists a measurable, symmetric function $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ such that

$$
\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]=f(\theta) \quad \text { for all } \theta \in \Theta,
$$

whenever X_{1}, \ldots, X_{m} are i.i.d. with distribution P_{θ}.

U-statistics: $U_{n}=\frac{1}{\binom{n}{m}} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{n, m}} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \quad$, where $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
\longrightarrow Reject for "large" values of $\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) U_{n, j}$.

Asymptotics: $\sqrt{n}\left(U_{n}-f(\theta)\right) \longrightarrow N_{p}\left(0, \Gamma_{g}\right)$, where $\Gamma_{g}=\operatorname{Cov}\left[g\left(X_{1}\right)\right]$ and g Hájek projection.

U-statistic is degenerate at irregular points \Longrightarrow Gaussian approximation fails.

Independent Sums

Observation: $h\left(X_{(i-1) m+1}, \ldots, X_{i m}\right)$ are independent.

$$
H_{n}=\frac{m}{n} \sum_{i=1}^{m} h\left(X_{(i-1) m+1}, \ldots, X_{i m}\right) .
$$

Test statistic:

$$
\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) H_{n, j} .
$$

Independent Sums

Observation: $h\left(X_{(i-1) m+1}, \ldots, X_{i m}\right)$ are independent.

$$
H_{n}=\frac{m}{n} \sum_{i=1}^{m} h\left(X_{(i-1) m+1}, \ldots, X_{i m}\right) .
$$

Test statistic:

$$
\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) H_{n, j} .
$$

Asymptotics: $\sqrt{n / m}\left(H_{n}-f(\theta)\right) \longrightarrow N\left(0, \Gamma_{h}\right)$, where $\Gamma_{h}=\operatorname{Cov}\left[h\left(X_{1}, \ldots, X_{m}\right)\right]$.
\checkmark High-dimensional approximation of test statistic $(p \gg n)$. (Chernozhukov et al., 2013)
\checkmark Non-degenerate limit at every parameter.
X inefficient \ldots sum is only over $\frac{n}{m}$ elements.

> Independent sums guard against degeneracy, but can we do better/use more kernel evaluations?

Proposal: Randomized Incomplete U-statistics

$$
U_{n, N}^{\prime}=\frac{1}{\hat{N}} \sum_{\iota=\left(i_{1}, \ldots, i_{m}\right) \in l_{n, m}} Z_{l} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)
$$

- $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
- Computational budget parameter $N \leq\binom{ n}{m}$.
- $\left\{Z_{l}: \iota \in I_{n, m}\right\}$ are i.i.d. $\operatorname{Ber}\left(p_{n}\right)$ with $p_{n}=N /\binom{n}{m}$.
- $\hat{N}=\sum_{l \in l_{n, m}} Z_{l}$ is the number of successes.

Proposal: Randomized Incomplete U-statistics

$$
U_{n, N}^{\prime}=\frac{1}{\hat{N}} \sum_{\iota=\left(i_{1}, \ldots, i_{m}\right) \in l_{n, m}} Z_{l} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)
$$

- $I_{n, m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{1}<\ldots<i_{m} \leq n\right\}$.
- Computational budget parameter $N \leq\binom{ n}{m}$.
- $\left\{Z_{l}: \iota \in I_{n, m}\right\}$ are i.i.d. $\operatorname{Ber}\left(p_{n}\right)$ with $p_{n}=N /\binom{n}{m}$.
- $\hat{N}=\sum_{l \in l_{n, m}} Z_{l}$ is the number of successes.

Asymptotics: $\sqrt{n}\left(U_{n, N}^{\prime}-f(\theta)\right) \approx N\left(0, m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}\right)$.

Choose $N=\mathcal{O}(n)$ to guard against degeneracy!

Proposed Test

Test statistic

$$
\mathcal{T}=\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) U_{n, N, j}^{\prime} .
$$

Critical value

1. Approximate distribution of \mathcal{T} by maximum of Gaussian random vector $Y \sim N_{p}(0, \Gamma)$, where $\Gamma=m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}$.
2. Construct an estimate $\hat{\Gamma}$ of the true asymptotic covariance matrix Γ in a Gaussian multiplier bootstrap method. Then $W \sim N_{p}(0, \hat{\Gamma})$ is "close" to $Y \sim N_{p}(0, \Gamma)$.
3. Critical value: Quantile $C_{W_{0}}(1-\alpha)$ of $W_{0}=\max _{1 \leq j \leq p} \widehat{\sigma}_{j}^{-1} W_{j}$.

Proposed Test

Test statistic

$$
\mathcal{T}=\max _{1 \leq j \leq p}\left(\sqrt{n} \widehat{\sigma}_{j}^{-1}\right) U_{n, N, j}^{\prime}
$$

Critical value

1. Approximate distribution of \mathcal{T} by maximum of Gaussian random vector $Y \sim N_{p}(0, \Gamma)$, where $\Gamma=m^{2} \Gamma_{g}+\frac{n}{N} \Gamma_{h}$.
2. Construct an estimate $\hat{\Gamma}$ of the true asymptotic covariance matrix Γ in a Gaussian multiplier bootstrap method. Then $W \sim N_{p}(0, \hat{\Gamma})$ is "close" to $Y \sim N_{p}(0, \Gamma)$.
3. Critical value: Quantile $c_{W_{0}}(1-\alpha)$ of $W_{0}=\max _{1 \leq j \leq p} \widehat{\sigma}_{j}^{-1} W_{j}$.

Our analysis. . .

If $N=\mathcal{O}(n)$ then the proposed test based on an incomplete U-statistic is asymptotically valid (controls type I error) in high dimensions $p \gg n$ and under mixed degeneracy:

$$
P\left(\mathcal{T}>c_{W_{0}}(1-\alpha)\right) \leq \alpha
$$

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127-3156.
Assumption: Either non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Or degenerate: $\sigma_{g_{j}}^{2}=0$ for all $j=1, \ldots, p$.

Mixed Degeneracy

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127-3156.
Assumption: Either non-degenerate: There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p$.
Or degenerate: $\sigma_{g_{j}}^{2}=0$ for all $j=1, \ldots, p$.

Mixed degeneracy assumption

Let $p_{1}, p_{2} \in \mathbb{N}$ such that $p_{1}+p_{2}=p$ and assume:
(A) There exists $c>0$ such that $\sigma_{g_{j}}^{2} \geq c$ for all $j=1, \ldots, p_{1}$.
(B) There exists $k>0$ and $\beta>0$ such that $\left\|g_{j}\left(X_{1}\right)-f_{j}(\theta)\right\|_{\psi_{\beta}} \leq C n^{-k}$ for all $j=p_{1}+1, \ldots, p$.
$\Longrightarrow \sigma_{\varepsilon_{j}}^{2} \leq \tilde{C}_{n} n^{-2 k}$
N. Sturma | Testing Constraints

High-dimensional Gaussian Approximation

Theorem

Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation on the hyperrectangles

$$
\sup _{R \in \mathbb{R}_{\mathrm{Re}}^{P}}\left|P\left(\sqrt{n}\left(U_{n, N}^{\prime}-f(\theta)\right) \in R\right)-P(Y \in R)\right| \leq C\left\{\omega_{n, 1}+\omega_{n, 2}+\omega_{n, 3}\right\},
$$

where $Y \sim N_{p}\left(0, m^{2} \Gamma_{g}+\frac{\eta}{N} \Gamma_{h}\right)$ and

$$
\omega_{n, 1}=\left(\frac{m^{2 / \beta} \log (p n)^{1+6 / \beta}}{n \wedge N}\right)^{1 / 6}, \quad \omega_{n, 2}=\frac{N^{1 / 2} m^{2} \log (p n)^{1 / 2+2 / \beta}}{n^{\min \{1 / 2+k, 5 / 6\}}}, \quad \omega_{n, 3}=\left(\frac{N m^{2} \log (p)^{2}}{n^{\min \{1+k, m\}}}\right)^{1 / 3}
$$

Note:

If $N=\mathcal{O}(n)$ and $k \geq 1 / 3$ is fixed, then the bound vanishes asymptotically if $\log (p n)^{3 / 2+6 / \beta}=\mathcal{O}(n)$.

High-dimensional Bootstrap Approximation

Recall: $Y=m Y_{g}+\sqrt{n / N} Y_{h}, \quad$ where $Y_{g} \sim N_{p}\left(0, \Gamma_{g}\right)$ and $Y_{h} \sim N_{p}\left(0, \Gamma_{h}\right)$ are independent.

High-dimensional Bootstrap Approximation

Recall: $Y=m Y_{g}+\sqrt{n / N} Y_{h}, \quad$ where $Y_{g} \sim N_{p}\left(0, \Gamma_{g}\right)$ and $Y_{h} \sim N_{p}\left(0, \Gamma_{h}\right)$ are independent.
Approach: Construct W_{g}, W_{h} such that, given the data, both are independent and approximate Y_{g}, Y_{h}.

High-dimensional Bootstrap Approximation

Recall: $Y=m Y_{g}+\sqrt{n / N} Y_{h}$, where $Y_{g} \sim N_{p}\left(0, \Gamma_{g}\right)$ and $Y_{h} \sim N_{p}\left(0, \Gamma_{h}\right)$ are independent.
Approach: Construct W_{g}, W_{h} such that, given the data, both are independent and approximate Y_{g}, Y_{h}.

Gaussian Multiplier Bootstrap:

$$
W_{h}=\frac{1}{\sqrt{\hat{N}}} \sum_{l=\left(i_{1}, \ldots, i_{m}\right) \in \in_{n, m}} \xi_{l} Z_{l}\left(h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)-U_{n, N}^{\prime}\right),
$$

where $\left\{\xi_{\iota}: \iota \in I_{n, m}\right\}$ are a collection of independent $N(0,1)$ r.v.'s.
\Longrightarrow Given the data, we have $W_{h} \approx Y_{h}$.

High-dimensional Bootstrap Approximation

Recall: $Y=m Y_{g}+\sqrt{n / N} Y_{h}$, where $Y_{g} \sim N_{p}\left(0, \Gamma_{g}\right)$ and $Y_{h} \sim N_{p}\left(0, \Gamma_{h}\right)$ are independent.
Approach: Construct W_{g}, W_{h} such that, given the data, both are independent and approximate Y_{g}, Y_{h}.

Gaussian Multiplier Bootstrap:

$$
W_{h}=\frac{1}{\sqrt{\hat{N}}} \sum_{l=\left(i_{1}, \ldots, i_{m}\right) \in \in_{n, m}} \xi_{l} Z_{l}\left(h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)-U_{n, N}^{\prime}\right),
$$

where $\left\{\xi_{\iota}: \iota \in I_{n, m}\right\}$ are a collection of independent $N(0,1)$ r.v.'s.
\Longrightarrow Given the data, we have $W_{h} \approx Y_{h}$.

1. Similarly, we construct W_{g}, such that, given the data, $W_{g} \approx Y_{g}$.
2. Finite sample Berry Esseen type bound for the approximation $Y \approx W=m W_{g}+\sqrt{n / N} W_{h}$.
3. Control studentization.
4. Establish asymptotic validity (control of type I error).

Our Test at Irregular Points

Simulated p-values for testing tetrads with $k=15$ observed variables close to a singular point.
Computational budget parameter $N=2 n$.

Size vs. Power

$$
n=500
$$

Empirical sizes vs. nominal levels for testing tetrads with $k=15$ observed variables. True parameter is close to a singular point.

Size vs. Power

Empirical sizes vs. nominal levels for testing tetrads with $k=15$ observed variables. True parameter is close to a singular point.

$$
n=500
$$

Empirical power for different local alternatives for testing tetrads with $k=15$ observed variables ($\alpha=0.05$). True parameter is a regular point.

Trade-off between efficiency and guarding against singularities.

Conclusion

\checkmark General strategy for simultaneous testing of many constraints $(p \gg n)$ ．
\checkmark Equality and inequality constraints．
\checkmark Optimization free．
Although computationally demanding for large p and large computational budget N ．
\checkmark Accommodate irregular settings where the incomplete U－statistics is mixed degenerate via $N=\mathcal{O}(n)$ ．

Our paper and background reading：
固 Sturma，Drton，Leung（2022）
Testing Many and Possibly Singular Polynomial Constraints．arXiv：2208．11756．
葍 Leung，Drton（2018）．
Algebraic tests of general Gaussian latent tree models．NeurIPS 2018.
园 Drton（2009）
Likelihood ratio tests and singularities．Ann．Statist．，37（2）：979－1012
 Established by the European Commission

